Created
January 6, 2016 12:26
-
-
Save kevin-keraudren/a8accc61bd5ee0ebb420 to your computer and use it in GitHub Desktop.
Example for https://github.com/lucasb-eyer/pydensecrf
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
import numpy as np | |
import cv2 | |
import densecrf as dcrf | |
from skimage.segmentation import relabel_sequential | |
import sys | |
# Usage: | |
# python dense_inference.py image annotations output | |
img = cv2.imread(sys.argv[1], 1) | |
labels = relabel_sequential(cv2.imread(sys.argv[2], 0))[0].flatten() | |
output = sys.argv[3] | |
M = labels.max() + 1 # number of labels | |
# Setup the CRF model | |
d = dcrf.DenseCRF2D(img.shape[0], img.shape[1], M) | |
# Certainty that the ground truth is correct | |
GT_PROB = 0.5 | |
# Simple classifier that is 50% certain that the annotation is correct | |
u_energy = -np.log(1.0 / M) | |
n_energy = -np.log((1.0 - GT_PROB) / (M - 1)) | |
p_energy = -np.log(GT_PROB) | |
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') | |
U[:, labels > 0] = n_energy | |
U[labels, np.arange(U.shape[1])] = p_energy | |
U[:, labels == 0] = u_energy | |
d.setUnaryEnergy(U) | |
d.addPairwiseGaussian(sxy=3, compat=3) | |
d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=img, compat=10) | |
# Do the inference | |
res = np.argmax(d.inference(5), axis=0).astype('float32') | |
res *= 255 / res.max() | |
res = res.reshape(img.shape[:2]) | |
cv2.imwrite(output, res.astype('uint8')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment