Last active
June 12, 2023 15:19
-
-
Save kevinlin1/ea3ea787ab2844f875b118ac19456b70 to your computer and use it in GitHub Desktop.
Bulk-update grades in Canvas based on student progress in the Ed learning management system. Requires: aiohttp[speedups] canvasapi nest_asyncio pandas requests
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import aiohttp | |
import asyncio | |
import canvasapi | |
import itertools | |
import json | |
import pandas as pd | |
import requests | |
import nest_asyncio | |
nest_asyncio.apply() | |
from io import StringIO | |
from typing import Any, NamedTuple | |
ED_COURSE_ID: int = ... | |
ED_API_TOKEN: str = ... | |
ED_API_HEADERS: dict[str, str] = {"Authorization": f"Bearer {ED_API_TOKEN}"} | |
CANVAS_COURSE_ID: int = ... | |
CANVAS_API_KEY: str = ... | |
canvas: canvasapi.Canvas = canvasapi.Canvas(..., CANVAS_API_KEY) | |
course: canvasapi.course.Course = canvas.get_course(CANVAS_COURSE_ID) | |
# Ed internal user IDs to Ed emails | |
users: dict[int, str] = { | |
user["id"]: user["email"] | |
for user in json.loads( | |
requests.get( | |
f"https://us.edstem.org/api/courses/{ED_COURSE_ID}/admin", | |
headers=ED_API_HEADERS | |
).text | |
)["users"] | |
} | |
# Ed emails to Canvas ID | |
students: dict[str, int] = { | |
# Map Canvas emails to Ed emails | |
{ | |
}.get(user.email, user.email): user.id | |
for user in course.get_users(enrollment_type=["student"]) | |
} | |
TEST_STUDENT: bool = True | |
if TEST_STUDENT: | |
students[...] = ... | |
class LessonPrep(NamedTuple): | |
assignment: canvasapi.assignment.Assignment | |
ed_lesson_ids: tuple[int, ...] | |
async def grade_data(self, session: aiohttp.ClientSession) -> dict[str, dict]: | |
dfs: list[pd.DataFrame] = [] | |
for ed_lesson_id in self.ed_lesson_ids: | |
async with session.post( | |
f"https://us.edstem.org/api/lessons/{ed_lesson_id}/results.csv", | |
params={ | |
"numbers": 0, | |
"scores": 0, | |
"students": int(not TEST_STUDENT), | |
"completions": 1, | |
"strategy": "best", | |
"ignore_late": 0, | |
"late_no_points": 0, | |
"tutorial": "", | |
"tz": "America/Los_Angeles", | |
}, | |
) as response: | |
df: pd.DataFrame = pd.read_csv(StringIO(await response.text())).set_index("email") | |
if TEST_STUDENT: | |
df = df.filter(students, axis=0) | |
start: int = df.columns.get_loc("total score") + 1 | |
end: int = df.columns.get_loc("⏸ Pause and 🧠 Think") + 1 | |
dfs.append(df.iloc[:, start:end].notna().sum(axis=1) / (end - start)) | |
result: pd.Series = pd.concat(dfs).groupby(level=0).sum() / len(self.ed_lesson_ids) | |
result.index = result.index.map(students) | |
return result.to_frame(name="posted_grade").to_dict("index") | |
class Discussion(NamedTuple): | |
assignment: canvasapi.assignment.Assignment | |
ed_discussion_id: int | |
async def grade_data(self, session: aiohttp.ClientSession) -> dict[str, dict]: | |
async with session.get( | |
f"https://us.edstem.org/api/threads/{self.ed_discussion_id}" | |
) as response: | |
data: list[dict[str, Any]] = json.loads(await response.text())["users"] | |
emails: list[str] = [users[user["id"]] for user in data] | |
return { | |
students[email]: {"posted_grade": "pass"} | |
for email in emails | |
if email in students | |
} | |
class Checkpoint(NamedTuple): | |
assignment: canvasapi.assignment.Assignment | |
ed_lesson_id: int | |
async def grade_data(self, session: aiohttp.ClientSession) -> dict[str, dict]: | |
async with session.post( | |
f"https://us.edstem.org/api/lessons/{self.ed_lesson_id}/results.csv", | |
params={ | |
"numbers": 0, | |
"scores": 0, | |
"students": int(not TEST_STUDENT), | |
"completions": 1, | |
"strategy": "best", | |
"ignore_late": 0, | |
"late_no_points": 0, | |
"tutorial": "", | |
"tz": "America/Los_Angeles", | |
}, | |
) as response: | |
df: pd.DataFrame = pd.read_csv(StringIO(await response.text())).set_index("email") | |
if TEST_STUDENT: | |
df = df.filter(students, axis=0) | |
start: int = df.columns.get_loc("total score") + 1 | |
df = df.iloc[:, start:].notna().sum(axis=1) / (len(df.columns) - start) | |
df.index = df.index.map(students) | |
return df.to_frame(name="posted_grade").to_dict("index") | |
class Assessment(NamedTuple): | |
assignment: canvasapi.assignment.Assignment | |
ed_challenge_id: int | |
rubrics: dict[str, dict[str, float]] = { | |
"Behavior": {"Exemplary": 0.55, "Satisfactory": 0.40, "Not yet": 0.25}, | |
"Concepts": {"Exemplary": 0.15, "Satisfactory": 0.15, "Not yet": 0.05}, | |
"Quality": {"Exemplary": 0.15, "Satisfactory": 0.15, "Not yet": 0.05}, | |
"Testing": {"Exemplary": 0.15, "Satisfactory": 0.15, "Not yet": 0.05}, | |
"Writeup": {"Exemplary": 0.15, "Satisfactory": 0.15, "Not yet": 0.05}, | |
} | |
def grade_from(self, email: str, **rubric_ratings: str) -> dict[str, Any]: | |
result: dict = { | |
"posted_grade": 0.0, | |
"rubric_assessment": {}, | |
} | |
for rubric, rating in rubric_ratings.items(): | |
result["posted_grade"] += self.rubrics.get(rubric, {}).get(rating, 0.0) | |
try: | |
criterion = next(c for c in self.assignment.rubric if c["description"] == rubric) | |
crit_rating = next(r for r in criterion["ratings"] if r["description"] == rating) | |
except StopIteration: | |
print(f"{self.assignment.name} - {email}") | |
raise | |
result["rubric_assessment"][criterion["id"]] = { | |
"points": crit_rating["points"], | |
"rating_id": crit_rating["id"], | |
} | |
return result | |
async def grade_data(self, session: aiohttp.ClientSession) -> dict[str, dict]: | |
async with session.post( | |
f"https://us.edstem.org/api/challenges/{self.ed_challenge_id}/results", | |
params={ | |
"students": int(not TEST_STUDENT), | |
"include_all": 0, | |
"type": "latest-with-feedback", | |
"numbers": 0, | |
"scores": 0, | |
"score_type": "passfail", | |
"feedback": 1, | |
"tz": "America/Los_Angeles", | |
}, | |
) as response: | |
df: pd.DataFrame = pd.read_csv(StringIO(await response.text())).set_index("email") | |
if TEST_STUDENT: | |
df = df.filter(students, axis=0) | |
return { | |
students[email]: self.grade_from(email, **rubric_ratings) | |
for email, rubric_ratings in df.filter(self.rubrics).to_dict("index").items() | |
} | |
class Late: | |
def __init__(self, work: Any) -> None: | |
self.assignment: canvasapi.assignment.Assignment = work.assignment | |
self.work: Any = work | |
def only_for(self, *emails: str) -> Late: | |
self.allowed_students: set[int] = set(students[email] for email in emails) | |
return self | |
async def grade_data(self, session: aiohttp.ClientSession) -> dict[str, dict]: | |
return { | |
student: grade | |
for student, grade in (await self.work.grade_data(session)).items() | |
if student in self.allowed_students | |
} | |
async def main(*coursework: Any) -> dict[str, dict[str, dict]]: | |
async with aiohttp.ClientSession(headers=ED_API_HEADERS) as session: | |
assignments: list[int] = [work.assignment.id for work in coursework] | |
tasks: list[Any] = [work.grade_data(session) for work in coursework] | |
return dict(zip(assignments, await asyncio.gather(*tasks))) | |
gradebook: dict[str, dict[str, dict]] = asyncio.run(main( | |
LessonPrep(course.get_assignment(...), (..., ..., ...)), | |
Discussion(course.get_assignment(...), ...), | |
Checkpoint(course.get_assignment(...), ...), | |
Assessment(course.get_assignment(...), ...), | |
)) | |
# https://canvas.instructure.com/doc/api/submissions.html#method.submissions_api.bulk_update | |
print(course.submissions_bulk_update(grade_data=gradebook).url) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Simpler, minimal example assuming a
test.csv
file in the following format.