Created
April 17, 2009 22:21
-
-
Save kevinpet/97300 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Mention | |
attr_accessor :topic, :prominence, :topic_sentiment, :other_sentiment | |
def initialize(topic, prominence, topic_sentiment, other_sentiment) | |
@topic = topic | |
@prominence = prominence | |
if(topic == "Apples") | |
topic_sentiment = topic_sentiment ** 3 | |
elsif topic == "Bananas" | |
topic_sentiment = Math.sqrt topic_sentiment | |
end | |
@topic_sentiment = topic_sentiment | |
@other_sentiment = other_sentiment | |
end | |
def other_prominence | |
1.0 - prominence | |
end | |
def overall_sentiment | |
topic_sentiment * prominence + other_sentiment * other_prominence | |
end | |
def discover_probability(factor) | |
prob = prominence ** (1 / factor) | |
end | |
end | |
def pretty(k,v) | |
display = "" | |
hash.each do |k,v| | |
display << "%10s " % k | |
display << "%02.1d" % v | |
end | |
end | |
Topics = [ "Apples", "Oranges", "Bananas" ] | |
Items = [ 10, 100, 1000, 10000 ] | |
Factor = [ 0.25, 0.5, 1, 2, 4 ] | |
Items.each do |items| | |
Factor.each do |factor| | |
mentions = [] | |
items.times do | |
mentions << Mention.new(Topics[rand(3)], rand, rand, rand) | |
end | |
correct = Hash.new | |
Topics.each { |t| correct[t] = 0.0 } | |
numCorrect = Hash.new | |
Topics.each { |t| numCorrect[t] = 0.0 } | |
approximate = Hash.new | |
Topics.each { |t| approximate[t] = 0.0 } | |
numApprox = Hash.new | |
Topics.each { |t| numApprox[t] = 0.0 } | |
randomized = Hash.new | |
Topics.each { |t| randomized[t] = 0.0 } | |
numRandom = Hash.new | |
Topics.each { |t| numRandom[t] = 0.0 } | |
mentions.each do |m| | |
correct[m.topic] = correct[m.topic] + m.prominence * m.topic_sentiment | |
numCorrect[m.topic] += m.prominence | |
approximate[m.topic] = approximate[m.topic] + | |
m.discover_probability(factor) * m.overall_sentiment | |
numApprox[m.topic] += m.discover_probability(factor) | |
if rand < m.discover_probability(factor) then | |
randomized[m.topic] += m.overall_sentiment | |
numRandom[m.topic] += 1.0 | |
end | |
end | |
puts "" | |
puts "Calculating for #{items} items, factor of #{factor}:" | |
maxCorrect = correct.values.inject { |m,x| m > x ? m : x } | |
scaled = [] | |
Topics.each_with_index do |v, i| | |
scaled[i] = "%10s %2.0f%% " % [v, 100 * correct[v] / numCorrect[v] ] | |
end | |
puts "Correct #{scaled.to_s}" | |
maxApprox = approximate.values.inject { |m,x| m > x ? m : x} | |
maxCorrect = correct.values.inject { |m,x| m > x ? m : x } | |
Topics.each_with_index do |v, i| | |
scaled[i] = "%10s %2.0f%% " % [v, 100 * approximate[v] / numApprox[v] ] | |
end | |
puts "Approx #{scaled.to_s}" | |
maxRand = randomized.values.inject { |m,x| m > x ? m : x} | |
maxCorrect = correct.values.inject { |m,x| m > x ? m : x } | |
Topics.each_with_index do |v, i| | |
scaled[i] = "%10s %2.0f%% " % [v, 100 * randomized[v] / numRandom[v] ] | |
end | |
puts "Random #{scaled.to_s}" | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment