Created
          May 19, 2017 18:27 
        
      - 
      
- 
        Save khakieconomics/a7ed85100581cec6c0eeaf2ce806291b to your computer and use it in GitHub Desktop. 
    Plotting posterior predictive density
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | library(ggplot2); library(dplyr) | |
| aa <- data_frame(a = rnorm(30, 2, .1), b = rnorm(30, .5, .05), sigma = rnorm(30, 1, .1)) | |
| g <- ggplot(data.frame(x = c(-1, 5.5)), aes(x)) | |
| for(i in 1:nrow(aa)) { | |
| g <- g + | |
| stat_function(fun = dnorm, args = list(mean = c(aa$a[i] + aa$b[i]), sd = aa$sigma[i]), alpha = 0.3) | |
| } | |
| g + | |
| geom_linerange(data = data.frame(ymin = 0, ymax = max(dnorm(1, aa$a + aa$b, aa$sigma)), x = 1), aes(x= x, ymin = ymin, ymax = ymax)) + | |
| geom_point(data= data.frame(x = rep(1, nrow(aa) +1), y = c(0, dnorm(1, aa$a + aa$b, aa$sigma))), aes(x = x, y = y), colour = "red") + | |
| xlab("y") + | |
| ylab("Density") + | |
| ggtitle("We can evaluate at the actual outcome\nover posterior draws", subtitle = "f(y | x, a, b, s)") | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment