Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save khalidmeister/f52151554d3b0d73173947b45f01baa5 to your computer and use it in GitHub Desktop.
Save khalidmeister/f52151554d3b0d73173947b45f01baa5 to your computer and use it in GitHub Desktop.
train-model.py
# Load the model (Download only at first time loading the model)
model_resnet = models.resnet18(pretrained=True)
model_vgg16 = models.vgg16(pretrained=True)
model_alexnet = models.alexnet(pretrained=True)
# Define the function to train the model
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / data_size[phase]
epoch_acc = running_corrects.double() / data_size[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model
# Set the requires_grad on each parameter to false,
# so it will not calculate the gradients
for param in model_vgg16.parameters():
param.requires_grad = False
for param in model_resnet.parameters():
param.requires_grad = False
for param in model_alexnet.parameters():
param.requires_grad = False
# Set the new final layer for our new dataset
num_ftrs = model_vgg16.classifier[6].in_features
model_vgg16.classifier[6] = nn.Linear(num_ftrs, len(class_names))
num_ftrs = model_resnet.fc.in_features
model_resnet.fc = nn.Linear(num_ftrs, len(class_names))
num_ftrs = model_alexnet.classifier[6].in_features
model_alexnet.classifier[6] = nn.Linear(num_ftrs, len(class_names))
# Enable GPU for the model
model_vgg16 = model_vgg16.to(device)
model_resnet = model_resnet.to(device)
model_alexnet = model_alexnet.to(device)
# Set the loss function
criterion = nn.CrossEntropyLoss()
# Set the optimizer and the scheduler to update the weights, and train the model.
optimizer_conv = optim.SGD(model_vgg16.classifier[6].parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_vgg16 = train_model(model_vgg16, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
optimizer_conv = optim.SGD(model_resnet.fc.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_resnet = train_model(model_resnet, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
optimizer_conv = optim.SGD(model_alexnet.classifier[6].parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_alexnet = train_model(model_alexnet, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment