- https://iamtrask.github.io/2015/07/12/basic-python-network/
- https://iamtrask.github.io/2015/07/27/python-network-part2/
- http://datasciencemasters.org/
- https://learntofish.wordpress.com/2012/01/15/introduction-to-markov-chains/
- http://neuralnetworksanddeeplearning.com/index.html
- http://yyue.blogspot.ca/2015/01/a-brief-overview-of-deep-learning.html
- http://www.datatau.com/news
- http://www.pnas.org/content/112/4/1036.full.pdf
- http://blog.thehackerati.com/post/126701202241/eigenstyle
- http://deeplearning4j.org/eigenvector
- http://johnkerl.org/miller/doc/
- https://github.com/automl/auto-sklearn
- https://wtvox.com/robotics/google-is-working-on-a-new-algorithm-thought-vectors/?utm_source=dlvr.it&utm_medium=twitter
- http://deeplearning4j.org/word2vec.html#crazy
- https://golog.co/blog/article/Setting_up_Apache_Spark_and_IPython
- http://blog.dato.com/an-introduction-to-distributed-machine-learning-1
- http://arxiv.org/pdf/1506.06442v1.pdf
- http://setosa.io/ev/
- http://www.gregreda.com/2015/08/23/cohort-analysis-with-python/
- http://gormanalysis.com/logistic-regression-fundamentals/
- http://multithreaded.stitchfix.com/blog/2015/07/30/gam/
- https://github.com/rushter/data-science-blogs
- https://www.youtube.com/watch?v=POCQBk1oBzI
- https://github.com/josephmisiti/awesome-machine-learning
- https://github.com/ChristosChristofidis/awesome-deep-learning
- http://arxiv.org/pdf/1508.06576v1.pdf
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://github.com/rhiever/Data-Analysis-and-Machine-Learning-Projects
- http://neuralnetworksanddeeplearning.com/
- https://plus.google.com/+ResearchatGoogle/posts/6m8NkC5vEEM
- https://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf
- http://videolectures.net/rldm2015_silver_reinforcement_learning/
- https://class.coursera.org/pgm-003
- https://www.coursera.org/learn/machine-learning/home/welcome
- http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7219432
- https://medium.com/@rchang/my-two-year-journey-as-a-data-scientist-at-twitter-f0c13298aee6
- http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
- http://deepsense.io/diagnosing-diabetic-retinopathy-with-deep-learning/
- http://nuit-blanche.blogspot.com/2015/08/unsupervised-feature-selection-on-data.html?utm_source=feedburner&utm_medium=twitter&utm_campaign=Feed%3A+blogspot%2FvhVI+%28Nuit+Blanche%29
- http://multithreaded.stitchfix.com/blog/2015/03/11/word-is-worth-a-thousand-vectors/
- https://en.wikipedia.org/wiki/Goldbach%27s_conjecture
- http://www.extremetech.com/extreme/141926-spaun-the-most-realistic-artificial-human-brain-yet
- https://news.stanford.edu/news/2015/september/toyota-stanford-center-090415.html
- http://www.techinsider.io/inside-spotify-and-the-future-of-music-streaming
- https://www.youtube.com/watch?v=M7smwHwdOIA
- http://arxiv.org/pdf/1410.3916v10.pdf
- http://www.computervisiontalks.com/introduction-to-deep-learning-with-python/
- http://outlace.com/Simple-Genetic-Algorithm-in-15-lines-of-Python/?utm_source=Python+Weekly+Newsletter&utm_campaign=1a32bc675e-Python_Weekly_Issue_208_September_10_2015&utm_medium=email&utm_term=0_9e26887fc5-1a32bc675e-312763949
- http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/?utm_source=Python+Weekly+Newsletter&utm_campaign=1a32bc675e-Python_Weekly_Issue_208_September_10_2015&utm_medium=email&utm_term=0_9e26887fc5-1a32bc675e-312763949
- https://andersbll.github.io/deeppy-website/
- http://machinelearningmastery.com/machine-learning-checklist/?utm_source=Python+Weekly+Newsletter&utm_campaign=1a32bc675e-Python_Weekly_Issue_208_September_10_2015&utm_medium=email&utm_term=0_9e26887fc5-1a32bc675e-312763949
- http://blog.dominodatalab.com/topology-and-density-based-clustering/?utm_source=Python+Weekly+Newsletter&utm_campaign=1a32bc675e-Python_Weekly_Issue_208_September_10_2015&utm_medium=email&utm_term=0_9e26887fc5-1a32bc675e-312763949
- http://andrew.gibiansky.com/blog/machine-learning/coding-intro-to-nns/?utm_source=Python+Weekly+Newsletter&utm_campaign=1a32bc675e-Python_Weekly_Issue_208_September_10_2015&utm_medium=email&utm_term=0_9e26887fc5-1a32bc675e-312763949
- https://www.quora.com/What-are-the-best-conferences-and-journals-about-machine-learning
- http://machinelearningmastery.com/how-to-evaluate-machine-learning-algorithms/
- http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf
- https://www.youtube.com/watch?t=1062&v=tleeC-KlsKA
- http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
- http://www.unofficialgoogledatascience.com/2015/08/an-introduction-to-poisson-bootstrap_26.html
- https://github.com/grahamjenson/list_of_recommender_systems
- http://arxiv.org/abs/1509.02971
- https://github.com/deeplearning4j/dl4j-spark-ml-examples/blob/master/notebooks/dl4j-iris.ipynb
- https://www.dataquest.io/mission/123/introduction-to-spark/
- https://medium.com/the-programmable-chronicles/rolling-in-the-deep-learning-4302bd5c06da
- http://arxiv.org/abs/1509.01240
- file:///Users/IO/Downloads/docs/7407-32675-1-PB.pdf
- https://twitter.com/AiGameDev/status/645354707536490496
- https://medium.com/rants-on-machine-learning/the-unreasonable-effectiveness-of-random-forests-f33c3ce28883
- http://arxiv.org/pdf/1509.06461v1.pdf
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/?utm_source=Python+Weekly+Newsletter&utm_campaign=e56d84f6e5-Python_Weekly_Issue_210_September_24_2015&utm_medium=email&utm_term=0_9e26887fc5-e56d84f6e5-312763949
- https://github.com/itdxer/neupy?utm_source=Python+Weekly+Newsletter&utm_campaign=e56d84f6e5-Python_Weekly_Issue_210_September_24_2015&utm_medium=email&utm_term=0_9e26887fc5-e56d84f6e5-312763949
- https://www.youtube.com/watch?v=KELYHjq9Gbs&utm_content=buffera48c2&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
- http://videolectures.net/deeplearning2015_larochelle_deep_learning/
- http://setosa.io/ev/markov-chains/
- http://ufldl.stanford.edu/tutorial/
- https://www.reddit.com/r/Python/comments/3nctlm/what_python_tools_should_i_be_using_on_every/?utm_source=Python+Weekly+Newsletter&utm_campaign=87e277d0f8-Python_Weekly_Issue_212_October_8_2015&utm_medium=email&utm_term=0_9e26887fc5-87e277d0f8-312763949
- http://efavdb.com/pandas-tips-and-tricks/?utm_source=Python+Weekly+Newsletter&utm_campaign=87e277d0f8-Python_Weekly_Issue_212_October_8_2015&utm_medium=email&utm_term=0_9e26887fc5-87e277d0f8-312763949
- http://u.cs.biu.ac.il/~yogo/nnlp.pdf?utm_source=Python+Weekly+Newsletter&utm_campaign=87e277d0f8-Python_Weekly_Issue_212_October_8_2015&utm_medium=email&utm_term=0_9e26887fc5-87e277d0f8-312763949
- https://jawbone.com/blog/classifying-steps-machine-learning/
- http://blog.insightdatalabs.com/spark-cluster-step-by-step/?utm_source=NoSQL+Weekly+Newsletter&utm_campaign=992d3fdeb3-NoSQL_Weekly_Issue_254_October_8_2015&utm_medium=email&utm_term=0_2f0470315b-992d3fdeb3-328642537
- https://www.youtube.com/watch?v=IcOMKXAw5VA&feature=youtu.be
- http://courses.nucl.ai/courses/pmgai/
- http://arxiv.org/abs/1510.03009
- http://yanirseroussi.com/deep-learning-resources/
- https://www.kaggle.com/miniushkin/introducing-kaggle-scripts/jitter-test-for-overfitting-notebook
- https://www.dataquest.io/blog/getting-started-with-machine-learning-python/?utm_source=Python+Weekly+Newsletter&utm_campaign=ce6cfe6ec9-Python_Weekly_Issue_214_October_22_2015&utm_medium=email&utm_term=0_9e26887fc5-ce6cfe6ec9-312763949
- https://www.youtube.com/watch?v=UPsYGzln-Ys&utm_source=Machine+Learning+Newsletter&utm_campaign=eeba47cfd4-Newsletter_3310_24_2015&utm_medium=email&utm_term=0_bf55334973-eeba47cfd4-274605053&mc_cid=eeba47cfd4&mc_eid=a4ab935058
- http://nerds.airbnb.com/confidence-splitting-criterions/?utm_source=Machine+Learning+Newsletter&utm_campaign=eeba47cfd4-Newsletter_3310_24_2015&utm_medium=email&utm_term=0_bf55334973-eeba47cfd4-274605053&mc_cid=eeba47cfd4&mc_eid=a4ab935058
- http://multithreaded.stitchfix.com/blog/2015/10/15/multiple-hypothesis-testing/?utm_source=Machine+Learning+Newsletter&utm_campaign=eeba47cfd4-Newsletter_3310_24_2015&utm_medium=email&utm_term=0_bf55334973-eeba47cfd4-274605053&mc_cid=eeba47cfd4&mc_eid=a4ab935058
- http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
- http://deeplearning4j.org/thoughtvectors
- http://insightdataengineering.com/blog/new-ecosystem/
- http://googleresearch.blogspot.com/2015/11/tensorflow-googles-latest-machine_9.html
- http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
- https://www.reddit.com/r/MachineLearning/comments/3sihru/tensorflow_tutorials_and_examples_for_beginners/?utm_source=twitterfeed&utm_medium=twitter
- https://t.co/6FtLFSBfEK
- https://www.projectoxford.ai/emotion
- https://twitter.com/karpathy/status/667563342316204032
- https://github.com/zer0n/deepframeworks/blob/master/README.md
- http://courses.nucl.ai/
- https://github.com/nlintz/TensorFlow-Tutorials?utm_source=Python+Weekly+Newsletter&utm_campaign=2f04961eb5-Python_Weekly_Issue_217_November_12_2015&utm_medium=email&utm_term=0_9e26887fc5-2f04961eb5-312763949
- https://github.com/gsalvatori/tredify?utm_source=Python+Weekly+Newsletter&utm_campaign=2f04961eb5-Python_Weekly_Issue_217_November_12_2015&utm_medium=email&utm_term=0_9e26887fc5-2f04961eb5-312763949
- https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/?utm_content=bufferf6fe0&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
- http://www.slideshare.net/jpatanooga/building-deep-learning-workflows-with-dl4j
- http://www.nervanasys.com/demystifying-deep-reinforcement-learning/
- http://www.slideshare.net/ChristopherMoody3/word2vec-lda-and-introducing-a-new-hybrid-algorithm-lda2vec-57135994
- http://futureoflife.org/2015/12/29/the-top-a-i-breakthroughs-of-2015/
- https://felixlaumon.github.io/2015/01/08/kaggle-right-whale.html
- https://www.reddit.com/r/DecisionTheory/
- https://www.researchgate.net/profile/Timothy_Lillicrap/publication/292074166_Mastering_the_game_of_Go_with_deep_neural_networks_and_tree_search/links/56a90f7d08ae7f592f0d5d0c.pdf
- http://arxiv.org/abs/1502.03492
- https://github.com/facebook/fb.resnet.torch
- https://www.reddit.com/r/NSFW411/wiki/index
- http://www.indiana.edu/~kruschke/BEST/BEST.pdf
- https://www.technologyreview.com/s/537716/machine-learning-algorithm-mines-rap-lyrics-then-writes-its-own/
- https://karpathy.github.io/2015/05/21/rnn-effectiveness/
- http://www.deeplearningbook.org/
- http://arxiv.org/abs/1603.01417
- http://arxiv.org/abs/1602.05110
- http://arxiv.org/pdf/1603.02199v1.pdf
- http://hi.cs.waseda.ac.jp/~esimo/en/code/
- http://arxiv.org/abs/1603.09382
- http://cs224d.stanford.edu/syllabus.html
- http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.74601&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification
- http://www.wise.io/tech/towards_cost-optimized_artificial_intelligence
- http://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html
- https://arxiv.org/abs/1606.01269
- https://github.com/fchollet/keras
- https://scontent.cdninstagram.com/t50.2886-16/14794921_1789436444636640_3386727660179685376_n.mp4
- http://course.fast.ai/
- https://twitter.com/GalaxyKate/status/812512962879561728
- http://www.deeplearningweekly.com/blog/demystifying-word2vec
- http://www.deeplearningweekly.com/pages/open_source_deep_learning_curriculum
- https://www.youtube.com/watch?v=ghEmQSxT6tw
- https://brohrer.github.io/how_convolutional_neural_networks_work.html
- https://www.gwern.net/docs/iq/2015-hofman.pdf
- http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
- https://github.com/Luubra/EmojiIntelligence
- https://github.com/janishar/mit-deep-learning-book-pdf
- https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/
- https://vimeo.com/214233053
Last active
January 11, 2018 22:38
-
-
Save kharmabum/9db786c95e2fa9d943b6a1555e0f8c6e to your computer and use it in GitHub Desktop.
AI links
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment