Created
November 7, 2019 07:53
-
-
Save khirotaka/57ee7ee0bc733d7ade3f5a7d9640b2fd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import Dataset, DataLoader | |
import sdc.datasets.uci as uci | |
class TSDataset(Dataset): | |
def __init__(self, train=True, raw=True): | |
self.is_train = train | |
self.train, self.test = uci.load_har(raw=raw) | |
def __getitem__(self, item): | |
if self.is_train: | |
data, label = self.train | |
else: | |
data, label = self.test | |
return data[item].astype(np.float32), label[item][0].astype(np.int64) - 1 | |
def __len__(self): | |
if self.is_train: | |
data, label = self.train | |
else: | |
data, label = self.test | |
return len(label) | |
class Network(nn.Module): | |
def __init__(self, in_size, hidden_size, n_class): | |
super(Network, self).__init__() | |
self.rnn = nn.LSTM(in_size, hidden_size, batch_first=True) | |
self.fc = nn.Linear(hidden_size, n_class) | |
def forward(self, x): | |
out, state = self.rnn(x) | |
out = self.fc(out[:, -1, :]) | |
return out | |
train_ds = TSDataset(train=True) | |
test_ds = TSDataset(train=False) | |
train_loader = DataLoader(train_ds, batch_size=256, shuffle=False) | |
test_loader = DataLoader(test_ds, batch_size=256, shuffle=False) | |
model = Network(9, 64, 6) | |
optimizer = optim.Adam(model.parameters()) | |
criterion = nn.CrossEntropyLoss() | |
model.train() | |
for epoch in range(50): | |
for x, y in train_loader: | |
optimizer.zero_grad() | |
output = model(x) | |
loss = criterion(output, y) | |
loss.backward() | |
optimizer.step() | |
print(loss) | |
correct = 0.0 | |
total = 0 | |
model.eval() | |
with torch.no_grad(): | |
for x, y in test_loader: | |
output = model(x) | |
loss = criterion(output, y) | |
total += y.shape[0] | |
_, predicted = torch.max(output, 1) | |
correct += (predicted == y).sum().float().cpu().item() | |
print(correct / total) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment