Created
May 28, 2019 13:35
-
-
Save khuangaf/04a332b44d1ff8cb6f71f73c0d2d0473 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch_geometric.data import InMemoryDataset | |
from tqdm import tqdm | |
class YooChooseBinaryDataset(InMemoryDataset): | |
def process(self): | |
data_list = [] | |
# process by session_id | |
grouped = df.groupby('session_id') | |
for session_id, group in tqdm(grouped): | |
sess_item_id = LabelEncoder().fit_transform(group.item_id) | |
group = group.reset_index(drop=True) | |
group['sess_item_id'] = sess_item_id | |
node_features = group.loc[group.session_id==session_id,['sess_item_id','item_id']].sort_values('sess_item_id').item_id.drop_duplicates().values | |
node_features = torch.LongTensor(node_features).unsqueeze(1) | |
target_nodes = group.sess_item_id.values[1:] | |
source_nodes = group.sess_item_id.values[:-1] | |
edge_index = torch.tensor([source_nodes, target_nodes], dtype=torch.long) | |
x = node_features | |
y = torch.FloatTensor([group.label.values[0]]) | |
data = Data(x=x, edge_index=edge_index, y=y) | |
data_list.append(data) | |
data, slices = self.collate(data_list) | |
torch.save((data, slices), self.processed_paths[0]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment