Created
September 3, 2018 12:11
-
-
Save khuangaf/41e3de743e4dcd9f8748cde47a6cd434 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def forward(self, user_indices, item_indices, titles): | |
user_embedding_mlp = self.embedding_user_mlp(user_indices) | |
item_embedding_mlp = self.embedding_item_mlp(item_indices) | |
user_embedding_mf = self.embedding_user_mf(user_indices) | |
item_embedding_mf = self.embedding_item_mf(item_indices) | |
#### mf part | |
mf_vector =torch.mul(user_embedding_mf, item_embedding_mf) | |
mf_vector = torch.nn.Dropout(self.config.dropout_rate_mf)(mf_vector) | |
#### mlp part | |
mlp_vector = torch.cat([user_embedding_mlp, item_embedding_mlp], dim=-1) # the concat latent vector | |
for idx, _ in enumerate(range(len(self.fc_layers))): | |
mlp_vector = self.fc_layers[idx](mlp_vector) | |
mlp_vector = torch.nn.ReLU()(mlp_vector) | |
mlp_vector = torch.nn.Dropout(self.config.dropout_rate_mlp)(mlp_vector) | |
vector = torch.cat([mlp_vector, mf_vector], dim=-1) | |
logits = self.logits(vector) | |
output = self.sigmoid(logits) | |
return output |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment