Last active
January 1, 2018 01:26
-
-
Save khuangaf/616136a972a8c1328605b36823750fd7 to your computer and use it in GitHub Desktop.
CryptocurrencyPrediction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
class PastSampler: | |
''' | |
Forms training samples for predicting future values from past value | |
''' | |
def __init__(self, N, K, sliding_window = True): | |
''' | |
Predict K future sample using N previous samples | |
''' | |
self.K = K | |
self.N = N | |
self.sliding_window = sliding_window | |
def transform(self, A): | |
M = self.N + self.K #Number of samples per row (sample + target) | |
#indexes | |
if self.sliding_window: | |
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1) | |
else: | |
if A.shape[0]%M == 0: | |
I = np.arange(M)+np.arange(0,A.shape[0],M).reshape(-1,1) | |
else: | |
I = np.arange(M)+np.arange(0,A.shape[0] -M,M).reshape(-1,1) | |
B = A[I].reshape(-1, M * A.shape[1], A.shape[2]) | |
ci = self.N * A.shape[1] #Number of features per sample | |
return B[:, :ci], B[:, ci:] #Sample matrix, Target matrix | |
#data file path | |
dfp = 'data/bitcoin2015to2017.csv' | |
#Columns of price data to use | |
columns = ['Close'] | |
df = pd.read_csv(dfp) | |
time_stamps = df['Timestamp'] | |
df = df.loc[:,columns] | |
original_df = pd.read_csv(dfp).loc[:,columns] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment