Skip to content

Instantly share code, notes, and snippets.

@khuangaf
Created September 3, 2018 11:33
Show Gist options
  • Save khuangaf/84eab97783dc7077881f90928278de2a to your computer and use it in GitHub Desktop.
Save khuangaf/84eab97783dc7077881f90928278de2a to your computer and use it in GitHub Desktop.
def __init__(self, config):
super(NeuMF, self).__init__()
#mf part
self.embedding_user_mf = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mf)
self.embedding_item_mf = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mf)
#mlp part
self.embedding_user_mlp = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mlp)
self.embedding_item_mlp = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mlp)
self.fc_layers = torch.nn.ModuleList()
for idx, (in_size, out_size) in enumerate(zip(config['layers'][:-1], config['layers'][1:])):
self.fc_layers.append(torch.nn.Linear(in_size, out_size))
self.logits = torch.nn.Linear(in_features=config['layers'][-1] + config['latent_dim_mf'] , out_features=1)
self.sigmoid = torch.nn.Sigmoid()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment