Last active
January 1, 2018 02:46
-
-
Save khuangaf/e73693945168dac9ada12f9707bf27f3 to your computer and use it in GitHub Desktop.
Cryptocurrency
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import applications | |
from keras.models import Sequential | |
from keras.models import Model | |
from keras.layers import Dropout, Flatten, Dense, Activation | |
from keras.callbacks import CSVLogger | |
import tensorflow as tf | |
from scipy.ndimage import imread | |
import numpy as np | |
import random | |
from keras.layers import LSTM | |
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU | |
from keras import backend as K | |
import keras | |
from keras.callbacks import CSVLogger, ModelCheckpoint | |
from keras.backend.tensorflow_backend import set_session | |
from keras import optimizers | |
import h5py | |
from sklearn.preprocessing import MinMaxScaler | |
import os | |
import pandas as pd | |
# import matplotlib | |
import matplotlib.pyplot as plt | |
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' | |
with h5py.File(''.join(['bitcoin2015to2017_close.h5']), 'r') as hf: | |
datas = hf['inputs'].value | |
labels = hf['outputs'].value | |
input_times = hf['input_times'].value | |
output_times = hf['output_times'].value | |
original_inputs = hf['original_inputs'].value | |
original_outputs = hf['original_outputs'].value | |
original_datas = hf['original_datas'].value | |
scaler=MinMaxScaler() | |
#split training validation | |
training_size = int(0.8* datas.shape[0]) | |
training_datas = datas[:training_size,:,:] | |
training_labels = labels[:training_size,:,:] | |
validation_datas = datas[training_size:,:,:] | |
validation_labels = labels[training_size:,:,:] | |
validation_original_outputs = original_outputs[training_size:,:,:] | |
validation_original_inputs = original_inputs[training_size:,:,:] | |
validation_input_times = input_times[training_size:,:,:] | |
validation_output_times = output_times[training_size:,:,:] | |
ground_true = np.append(validation_original_inputs,validation_original_outputs, axis=1) | |
ground_true_times = np.append(validation_input_times,validation_output_times, axis=1) | |
step_size = datas.shape[1] | |
batch_size= 8 | |
nb_features = datas.shape[2] | |
model = Sequential() | |
# 2 layers | |
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20)) | |
# model.add(LeakyReLU()) | |
model.add(Dropout(0.25)) | |
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16)) | |
model.load_weights('weights/bitcoin2015to2017_close_CNN_2_relu-44-0.00030.hdf5') | |
model.compile(loss='mse', optimizer='adam') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment