Created
May 20, 2019 03:58
-
-
Save kidapu/fb0be31b5eeaa39dcb7a2c276ee5dbba to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* eos - A 3D Morphable Model fitting library written in modern C++11/14. | |
* | |
* File: examples/fit-model-simple.cpp | |
* | |
* Copyright 2015 Patrik Huber | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
#include "eos/core/Image.hpp" | |
#include "eos/core/image/opencv_interop.hpp" | |
#include "eos/core/Landmark.hpp" | |
#include "eos/core/LandmarkMapper.hpp" | |
#include "eos/core/read_pts_landmarks.hpp" | |
#include "eos/core/write_obj.hpp" | |
#include "eos/fitting/RenderingParameters.hpp" | |
#include "eos/fitting/linear_shape_fitting.hpp" | |
#include "eos/fitting/orthographic_camera_estimation_linear.hpp" | |
#include "eos/morphablemodel/MorphableModel.hpp" | |
#include "eos/render/texture_extraction.hpp" | |
#include "Eigen/Core" | |
#include "boost/filesystem.hpp" | |
#include "boost/program_options.hpp" | |
#include "opencv2/core/core.hpp" | |
#include "opencv2/highgui/highgui.hpp" | |
#include "opencv2/imgproc/imgproc.hpp" | |
#include <iostream> | |
#include <vector> | |
using namespace eos; | |
namespace po = boost::program_options; | |
namespace fs = boost::filesystem; | |
using eos::core::Landmark; | |
using eos::core::LandmarkCollection; | |
using Eigen::Vector2f; | |
using Eigen::Vector4f; | |
using cv::Mat; | |
using std::cout; | |
using std::endl; | |
using std::string; | |
using std::vector; | |
/** | |
* This app demonstrates estimation of the camera and fitting of the shape | |
* model of a 3D Morphable Model from an ibug LFPW image with its landmarks. | |
* | |
* First, the 68 ibug landmarks are loaded from the .pts file and converted | |
* to vertex indices using the LandmarkMapper. Then, an orthographic camera | |
* is estimated, and then, using this camera matrix, the shape is fitted | |
* to the landmarks. | |
*/ | |
int main(int argc, char* argv[]) | |
{ | |
string modelfile, isomapfile, imagefile, landmarksfile, mappingsfile, outputbasename; | |
try | |
{ | |
po::options_description desc("Allowed options"); | |
// clang-format off | |
desc.add_options() | |
("help,h", "display the help message") | |
("model,m", po::value<string>(&modelfile)->required()->default_value("share/bfm2017-1_bfm_nomouth.bin"), | |
"a Morphable Model stored as cereal BinaryArchive") | |
("image,i", po::value<string>(&imagefile)->required()->default_value("data/image_0010.png"), | |
"an input image") | |
("landmarks,l", po::value<string>(&landmarksfile)->required()->default_value("data/image_0010.pts"), | |
"2D landmarks for the image, in ibug .pts format") | |
("mapping,p", po::value<string>(&mappingsfile)->required()->default_value("share/ibug_to_bfm2017-1_bfm_nomouth.txt"), | |
"landmark identifier to model vertex number mapping") | |
("output,o", po::value<string>(&outputbasename)->required()->default_value("out"), | |
"basename for the output rendering and obj files"); | |
// clang-format on | |
po::variables_map vm; | |
po::store(po::command_line_parser(argc, argv).options(desc).run(), vm); | |
if (vm.count("help")) | |
{ | |
cout << "Usage: fit-model-simple [options]" << endl; | |
cout << desc; | |
return EXIT_SUCCESS; | |
} | |
po::notify(vm); | |
} | |
catch (const po::error& e) | |
{ | |
cout << "Error while parsing command-line arguments: " << e.what() << endl; | |
cout << "Use --help to display a list of options." << endl; | |
return EXIT_FAILURE; | |
} | |
// Load the image, landmarks, LandmarkMapper and the Morphable Model: | |
Mat image = cv::imread(imagefile); | |
LandmarkCollection<Eigen::Vector2f> landmarks; | |
try | |
{ | |
landmarks = core::read_pts_landmarks(landmarksfile); | |
} catch (const std::runtime_error& e) | |
{ | |
cout << "Error reading the landmarks: " << e.what() << endl; | |
return EXIT_FAILURE; | |
} | |
morphablemodel::MorphableModel morphable_model; | |
try | |
{ | |
morphable_model = morphablemodel::load_model(modelfile); | |
} | |
catch (const std::runtime_error& e) | |
{ | |
cout << "Error loading the Morphable Model: " << e.what() << endl; | |
return EXIT_FAILURE; | |
} | |
// The landmark mapper is used to map 2D landmark points (e.g. from the ibug scheme) to vertex ids: | |
core::LandmarkMapper landmark_mapper; | |
try | |
{ | |
landmark_mapper = core::LandmarkMapper(mappingsfile); | |
} catch (const std::exception& e) | |
{ | |
cout << "Error loading the landmark mappings: " << e.what() << endl; | |
return EXIT_FAILURE; | |
} | |
// Draw the loaded landmarks: | |
Mat outimg = image.clone(); | |
for (auto&& lm : landmarks) | |
{ | |
cv::rectangle(outimg, cv::Point2f(lm.coordinates[0] - 2.0f, lm.coordinates[1] - 2.0f), | |
cv::Point2f(lm.coordinates[0] + 2.0f, lm.coordinates[1] + 2.0f), {255, 0, 0}); | |
} | |
// These will be the final 2D and 3D points used for the fitting: | |
vector<Vector4f> model_points; // the points in the 3D shape model | |
vector<int> vertex_indices; // their vertex indices | |
vector<Vector2f> image_points; // the corresponding 2D landmark points | |
// Sub-select all the landmarks which we have a mapping for (i.e. that are defined in the 3DMM): | |
for (int i = 0; i < landmarks.size(); ++i) | |
{ | |
auto converted_name = landmark_mapper.convert(landmarks[i].name); | |
if (!converted_name) | |
{ // no mapping defined for the current landmark | |
continue; | |
} | |
int vertex_idx = std::stoi(converted_name.value()); | |
auto vertex = morphable_model.get_shape_model().get_mean_at_point(vertex_idx); | |
model_points.emplace_back(Vector4f(vertex.x(), vertex.y(), vertex.z(), 1.0f)); | |
vertex_indices.emplace_back(vertex_idx); | |
image_points.emplace_back(landmarks[i].coordinates); | |
} | |
// Estimate the camera (pose) from the 2D - 3D point correspondences | |
fitting::ScaledOrthoProjectionParameters pose = | |
fitting::estimate_orthographic_projection_linear(image_points, model_points, true, image.rows); | |
fitting::RenderingParameters rendering_params(pose, image.cols, image.rows); | |
// The 3D head pose can be recovered as follows: | |
const float yaw_angle = glm::degrees(glm::yaw(rendering_params.get_rotation())); | |
// and similarly for pitch and roll. | |
// Estimate the shape coefficients by fitting the shape to the landmarks: | |
const Eigen::Matrix<float, 3, 4> affine_from_ortho = | |
fitting::get_3x4_affine_camera_matrix(rendering_params, image.cols, image.rows); | |
const vector<float> fitted_coeffs = fitting::fit_shape_to_landmarks_linear( | |
morphable_model.get_shape_model(), affine_from_ortho, image_points, vertex_indices); | |
// Obtain the full mesh with the estimated coefficients: | |
const core::Mesh mesh = morphable_model.draw_sample(fitted_coeffs, vector<float>()); | |
// Extract the texture from the image using given mesh and camera parameters: | |
// const core::Image4u isomap = render::extract_texture(mesh, affine_from_ortho, core::from_mat(image)); | |
// Save the mesh as textured obj: | |
fs::path outputfile = outputbasename + ".obj"; | |
core::write_textured_obj(mesh, outputfile.string()); | |
// And save the isomap: | |
// outputfile.replace_extension(".isomap.png"); | |
// cv::imwrite(outputfile.string(), core::to_mat(isomap)); | |
cout << "Finished fitting and wrote result mesh and isomap to files with basename " | |
<< outputfile.stem().stem() << "." << endl; | |
return EXIT_SUCCESS; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment