Created
January 21, 2017 12:26
-
-
Save kindziora/b9b9bf24d4f0dcd45f01b56ec24bb2fa to your computer and use it in GitHub Desktop.
fnc-8s.prototxt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# data layers | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TEST | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
# data preprocessing | |
layer { | |
# Use Power layer in deploy phase for input scaling | |
name: "shift" | |
bottom: "data" | |
top: "data_preprocessed" | |
type: "Power" | |
power_param { | |
shift: -116.0 | |
} | |
} | |
# main network description | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data_preprocessed" | |
top: "conv1_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 100 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5_3" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "fc6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "fc6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 7 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "drop6" | |
type: "Dropout" | |
bottom: "fc6" | |
top: "fc6" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "fc6" | |
top: "fc7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4096 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "drop7" | |
type: "Dropout" | |
bottom: "fc7" | |
top: "fc7" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "score_fr" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "score_fr" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "upscore2" | |
type: "Deconvolution" | |
bottom: "score_fr" | |
top: "upscore2" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "score_pool4" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "score_pool4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "score_pool4c" | |
type: "Crop" | |
bottom: "score_pool4" | |
bottom: "upscore2" | |
top: "score_pool4c" | |
crop_param { | |
axis: 2 | |
offset: 5 | |
} | |
} | |
layer { | |
name: "fuse_pool4" | |
type: "Eltwise" | |
bottom: "upscore2" | |
bottom: "score_pool4c" | |
top: "fuse_pool4" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore_pool4" | |
type: "Deconvolution" | |
bottom: "fuse_pool4" | |
top: "upscore_pool4" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "score_pool3" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "score_pool3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
pad: 0 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "score_pool3c" | |
type: "Crop" | |
bottom: "score_pool3" | |
bottom: "upscore_pool4" | |
top: "score_pool3c" | |
crop_param { | |
axis: 2 | |
offset: 9 | |
} | |
} | |
layer { | |
name: "fuse_pool3" | |
type: "Eltwise" | |
bottom: "upscore_pool4" | |
bottom: "score_pool3c" | |
top: "fuse_pool3" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "upscore8" | |
type: "Deconvolution" | |
bottom: "fuse_pool3" | |
top: "upscore8" | |
param { | |
lr_mult: 0 | |
} | |
convolution_param { | |
num_output: 21 | |
bias_term: false | |
kernel_size: 16 | |
stride: 8 | |
} | |
} | |
layer { | |
name: "score" | |
type: "Crop" | |
bottom: "upscore8" | |
bottom: "data" | |
top: "score" | |
crop_param { | |
axis: 2 | |
offset: 31 | |
} | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "score" | |
bottom: "label" | |
top: "loss" | |
loss_param { | |
ignore_label: 255 | |
normalize: false | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "score" | |
bottom: "label" | |
top: "accuracy" | |
include { stage: "val" } | |
accuracy_param { ignore_label: 255 } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment