Last active
December 6, 2019 15:25
-
-
Save kingjr/552310cce64dd0860faaf04561799871 to your computer and use it in GitHub Desktop.
architecture_plot
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%matplotlib inline | |
import matplotlib.pyplot as plt | |
import numpy as np | |
n_layers = 4 | |
n_steps = 4 | |
fig, axes = plt.subplots(1, 3, sharex=True, sharey=True, figsize=[10, 3]) | |
arrow = dict(width=.01, head_width=.1, color='C0') | |
def plot_architecture(ax, n_layers=n_layers): | |
for step in range(n_steps): | |
for layer in range(1, n_layers): | |
for r in np.linspace(-.15, .15, 4): | |
ax.scatter(step+r, layer+r, color='w', edgecolor='k', zorder=1000-r, s=100) | |
for i, word in enumerate('brains are really great'.split()): | |
ax.text(i, -.5, word, horizontalalignment='center', color='k') | |
ax.set_aspect('equal') | |
for spine in ('top', 'right', 'left', 'bottom'): | |
ax.spines[spine].set_visible(False) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.set_xlim(-.5, n_steps-.5) | |
ax.set_ylim(-1, n_layers-.5) | |
def plot_word_embedding(ax): | |
plot_architecture(ax, 2) | |
for step in range(n_steps): | |
for layer in range(1): | |
ax.arrow(step, layer, 0, .6, **arrow) | |
ax.set_title('Word Embedding') | |
def plot_lstm(ax): | |
plot_architecture(ax) | |
# feedforward | |
for step in range(n_steps): | |
for layer in range(n_layers-1): | |
ax.arrow(step, layer, 0, .6, **arrow) | |
# recurrence | |
for step in range(n_steps-1): | |
for layer in range(1, n_layers): | |
ax.arrow(step, layer, .6, 0, **arrow) | |
ax.set_title('Causal LSTM') | |
def plot_transformer(ax): | |
plot_architecture(ax) | |
# feedforward | |
for step in range(n_steps): | |
for layer in range(n_layers-1): | |
ax.arrow(step, layer, 0, .6, **arrow) | |
# attention | |
for step in range(n_steps-1): | |
for layer in range(n_layers-1): | |
for reach in range(n_steps - 1): | |
if (reach + step + 1) >= n_steps: | |
continue | |
ax.arrow(step, layer, (reach+1.) - .2, .6, **arrow) | |
ax.set_title('Causal Transformer') | |
plot_word_embedding(axes[0]) | |
plot_lstm(axes[1]) | |
plot_transformer(axes[2]) | |
fig.tight_layout() | |
fig.savefig('models.svg') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment