Created
May 23, 2023 13:05
-
-
Save kingjr/684c5fd8bb050d4abe4d5ffb4e437fcb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoModel, AutoTokenizer | |
import torch | |
from tqdm.notebook import trange, tqdm | |
import pandas as pd | |
from bm.studies.utils import match_list | |
import numpy as np | |
import matplotlib.pyplot as plt | |
class LM(): | |
def __init__(self, model='gpt2', device='cuda', stride=200, agg='mean', layers=None): | |
self.tokenizer = AutoTokenizer.from_pretrained(model, add_special_token=False) | |
self.model = AutoModel.from_pretrained(model) | |
self.model.to(device) | |
self.stride = stride | |
self.agg = agg | |
self.layers = layers | |
def __call__(self, words: pd.DataFrame) -> torch.Tensor: | |
# assign token id for each word | |
words, tokens = self._get_tokens(words) | |
# retrieve transformer embedding | |
token_embs = self._get_token_embs(tokens) | |
# re-align to word embedding | |
word_embs = self._get_word_embs(words, token_embs, self.agg) | |
return word_embs | |
def _get_token_embs(self, tokens: torch.Tensor) -> torch.Tensor: | |
# retrieve size of model buffer | |
max_length = self.model.config.n_ctx | |
assert 768<=max_length<=1024 | |
# for speed, we'll stride the transformer | |
n_tokens = tokens.shape[1] | |
starts = np.arange(max_length, n_tokens, self.stride) | |
strides = [max_length] + [self.stride]*(len(starts)-1) | |
missing = n_tokens - starts[-1] | |
if missing: | |
starts = np.r_[starts, n_tokens] | |
strides = strides + [missing] | |
positions = torch.range(0, n_tokens).to(self.model.device) | |
pos_max = self.model.config.max_position_embeddings - 1 | |
positions = (positions % pos_max).long() | |
latents = [] | |
past_key_values = None | |
for start, stride in zip(tqdm(starts), strides): | |
with torch.no_grad(): | |
inpt = tokens[:, start-max_length:start] | |
pos = positions[start-max_length:start] | |
# contextual word embedding for all layers | |
out = self.model(inpt, | |
position_ids=pos, | |
output_hidden_states=True) | |
cwe = out.hidden_states | |
cwe = torch.stack(cwe)[:, 0] | |
# add word embedding | |
wte = self.model.base_model.wte.forward(inpt) | |
# remove positional embedding | |
latent = torch.cat([wte, cwe], dim=0) | |
if start-max_length: | |
latent = latent[:, -stride:, :] | |
latents.append(latent.cpu()) | |
latents = torch.cat(latents, dim=1).permute(1, 2, 0) | |
if self.layers: | |
latents = latents[..., self.layers] | |
return latents | |
def _get_tokens(self, words: pd.DataFrame): | |
"""get token id for each words""" | |
# tokenize word sequence | |
string = ' '.join(words.word) | |
tokens = self.tokenizer.encode(string, return_tensors="pt") | |
def to_chars(df: pd.DataFrame): | |
"""convert a dataframe of word into a dataframe of characters""" | |
chars = [] | |
for i, d in df.iterrows(): | |
for char in d.word: | |
chars.append(dict(word_id=i, char=char)) | |
for k, v in d.items(): | |
chars[-1][k] = v | |
return pd.DataFrame(chars) | |
# dataframe for token | |
assert len(tokens)==1 | |
df = pd.DataFrame(tokens[0], columns=['token']) | |
df['word'] = df.token.apply(self.tokenizer.decode) | |
# dataframe for chars | |
token_chars = to_chars(df) | |
word_chars = to_chars(words[['word']]) | |
# match at the character level | |
i, j = match_list(token_chars.char.values, word_chars.char.values) | |
word_chars.loc[j, 'match'] = i | |
# assign corresponding token_id to each word | |
words['token_id'] = '[]' | |
for wid, d in word_chars.groupby('word_id'): | |
# remove all mismatch characters | |
match = [int(i) for i in d.match.values if i>=0] | |
# identify corresponding token id | |
match = list(token_chars.loc[match].word_id.unique()) | |
# store as str to avoid pandas error | |
words.loc[wid, 'token_id'] = str(match) | |
# back to list | |
words.token_id = words.token_id.apply(eval) | |
# | |
tokens = tokens.to(self.model.device) | |
return words, tokens | |
@staticmethod | |
def _get_word_embs(words: pd.DataFrame, latents: torch.Tensor, method='mean') -> torch.Tensor: | |
out = torch.zeros(len(words), *latents[0].shape) | |
for wid, d in words.iterrows(): | |
# if the word did not get a token, contiue | |
if not len(d.token_id): | |
continue | |
# aggregate multiple token for each word | |
latent = latents[d.token_id] | |
if method == 'mean': | |
latent = latent.mean(0) | |
elif method == 'last': | |
latent = latent[-1] | |
elif method == 'sum': | |
latent = latent.sum(0) | |
else: | |
raise | |
out[wid] = latent | |
return out | |
try: | |
from bm.studies.narrative2020 import Narrative2020Recording | |
rec = next(Narrative2020Recording.iter()) | |
events = rec.events() | |
words = events.query("kind=='word'").copy().reset_index(drop=True) | |
except: | |
import random, string | |
def random_text(n_words): | |
df = [] | |
for i in range(n_words): | |
word_length = random.randint(0, 10) | |
word = ''.join(random.choice(string.ascii_letters) for _ in range(word_length)) | |
df.append(dict(word=word.lower())) | |
return pd.DataFrame(df) | |
words = random_text(100) | |
lm = LM(stride=100) | |
embs = lm(words) | |
plt.matshow(embs[:, :, 3].T, vmin=-1, vmax=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment