Skip to content

Instantly share code, notes, and snippets.

@kinoc
Created June 21, 2021 10:54
Show Gist options
  • Save kinoc/2d636a68876cd3de7b6e9c9452b61089 to your computer and use it in GitHub Desktop.
Save kinoc/2d636a68876cd3de7b6e9c9452b61089 to your computer and use it in GitHub Desktop.
Run HuggingFace converted GPT-J-6B checkpoint using FastAPI and Ngrok on local GPU (3090 or Titan)
# So you want to run GPT-J-6B using HuggingFace+FastAPI on a local rig (3090 or TITAN) ... tricky.
# special help from the Kolob Colab server https://colab.research.google.com/drive/1VFh5DOkCJjWIrQ6eB82lxGKKPgXmsO5D?usp=sharing#scrollTo=iCHgJvfL4alW
# Conversion to HF format (12.6GB tar image) found at https://drive.google.com/u/0/uc?id=1NXP75l1Xa5s9K18yf3qLoZcR6p4Wced1&export=download
# Uses GDOWN to get the image
# You will need 26 GB of space, 12+GB for the tar and 12+GB expanded (you can nuke the tar after expansion)
# Near Simplest Language model API, with room to expand!
# runs GPT-J-6B on 3090 and TITAN and servers it using FastAPI
# change "seq" (which is the context size) to adjust footprint
#
# JAX-based
# seq vram usage
# 512 14.7G
# 900 15.3G
#
# HF-based
# seq vram usage
# 512 15.6 G
# 900 --.- G
#
# uses FastAPI, so install that
# https://fastapi.tiangolo.com/tutorial/
# pip install fastapi
# pip install uvicorn[standard]
# pip install git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3
# pip install termcolor
# #`pip install flask-ngrok
# #`pip install flask_cloudflared
# pip install pyngrok
# pip install nest-asyncio
# pip install gdown
# gdown --id 1NXP75l1Xa5s9K18yf3qLoZcR6p4Wced1 --output ../j6b_ckpt.tar
# (resutls 12.6GB [18:19], 11.4MB/s]
#
# note: for my setup I needed to perform symlink suggested ny myjr52 in https://github.com/google/jax/issues/5231
# https://pytorch.org/get-started/previous-versions/
# for cuda 10.1
# pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
# for cuda 11.2
# pip install torch==1.8.1+cu112 torchvision==0.9.1+cu112 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
# conda install python-multipart
#--------------------------------------
#chek pyngrok — https://github.com/alexdlaird/pyngrok
#install
# pip install pyngrok
#
# Set up your ngrok Authtoken
# ngrok authtoken xxxxxxxxxxxxx
# GO: local execution
# XLA_PYTHON_CLIENT_PREALLOCATE=false XLA_PYTHON_CLIENT_ALLOCATOR=platform CUDA_VISIBLE_DEVICES=0 python3 jserv_hf_fast.py
# When done try
# http://localhost:8051/docs#/default/read_completions_engines_completions_post
# now you are in FastAPI + EleutherAI land
# note: needs async on the read_completions otherwise jax gets upset
# REMEMBER: adjust the location of the checkpoint image TAR_PATH
#
# Using plain HF instead of Jax so can comment out JAX related for this install
# -----------------------------------------
# # uses https://github.com/kingoflolz/mesh-transformer-jax
# # so install jax on your system so recommend you get it working with your GPU first
# # !apt install zstd
#
# #
# # the "slim" version contain only bf16 weights and no optimizer parameters, which minimizes bandwidth and memory
# # wget https://the-eye.eu/public/AI/GPT-J-6B/step_383500_slim.tar.zstd
# # tar -I zstd -xf step_383500_slim.tar.zstd
# # git clone https://github.com/kingoflolz/mesh-transformer-jax.git
# # pip install -r mesh-transformer-jax/requirements.txt
# # jax 0.2.12 is required due to a regression with xmap in 0.2.13
# # pip install mesh-transformer-jax/ jax==0.2.12
# # I have cuda 10.1 and python 3.9 so had to update
# # pip3 install --upgrade "https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.66+cuda101-cp39-none-manylinux2010_x86_64.whl"
# -----------------------------------------
#
# Started 2021-06-19 (USA Juneteenth) and released to freedom under MIT
#
from termcolor import colored
#from flask import Flask, redirect, url_for, request
import json
import torch
import requests
import subprocess
import tarfile
import os
import re
import time
from threading import Timer
from typing import Optional
from typing import Dict
from fastapi import FastAPI,Request,Body
import uvicorn
import nest_asyncio
from pyngrok import ngrok
import threading
import numpy as np
import transformers
from transformers import GPTNeoForCausalLM, AutoConfig,AutoTokenizer,GPT2Tokenizer
print(colored("Server Initialization ...", "magenta"))
connect_method = "Ngrok" #@param ["Ngrok", "Cloudflare"]
#if connect_method == "Cloudflare":
# from flask_cloudflared import run_with_cloudflared
#elif connect_method == "Ngrok":
# from flask_ngrok import run_with_ngrok
model = None
tokenizer = None
#------------------------------------------
# REMEMBER: Change these settings to local values
active_model=''
runtime_gpu="cuda:0"
training_gpu="cuda:0"
TAR_PATH ="../"
check_point_dir="../j6b_ckpt"
SERVER_PORT = 9995
NGROK_AUTH_TOKEN ="xxxxxxxxx"
#-----------------------------------------
#https://stackoverflow.com/questions/48152674/how-to-check-if-pytorch-is-using-the-gpu
report_color ="green"
if (not torch.cuda.is_available()): report_color="red"
print(colored(" torch.cuda.is_available() = "+str(torch.cuda.is_available()), report_color))
print(colored(" torch.cuda.current_device() = "+str(torch.cuda.current_device()), report_color))
print(colored(" torch.cuda.device_count() = "+str(torch.cuda.device_count()), report_color))
print(colored(" torch.cuda.get_device_name(0) = "+str(torch.cuda.get_device_name()), report_color))
print(colored(" Mem Allocated:{}GB".format(round(torch.cuda.memory_allocated(0)/1024**3,1)), report_color))
print(colored(" Mem Cached: {}GB".format(round(torch.cuda.memory_reserved(0)/1024**3,1)), report_color))
# Set path to tar file and unpack it
model_on_drive = TAR_PATH +"j6b_ckpt.tar"
print(colored("Checking j6b_ckpt ...", "magenta"))
print(colored(" TAR_PATH ={}".format(TAR_PATH),"green"))
print(colored(" check_point_dir ={}".format(check_point_dir),"green"))
print(colored(" model_on_drive ={}".format(model_on_drive),"green"))
if (not os.path.isdir(check_point_dir)):
print(colored("Unpacking tar file, please wait...", "magenta"))
tar = tarfile.open(model_on_drive, "r")
tar.extractall()
tar.close()
else:
print( colored("Expanded Checkpoint directory found", "green") )
# Initialize the model
print(colored("Initializing model, please wait...", "magenta"))
config = AutoConfig.from_pretrained("EleutherAI/gpt-neo-2.7B")
config.attention_layers = ["global"] * 28
config.attention_types = [["global"], 28]
config.num_layers = 28
config.num_heads = 16
config.hidden_size = 256 * config.num_heads
config.vocab_size = 50400
config.rotary = True
config.rotary_dim = 64
config.jax = True
try:
from collections.abc import MutableMapping
except ImportError:
from collections import MutableMapping
from pathlib import Path
class Checkpoint(MutableMapping):
def __init__(self, chkpt_dir, device="cpu"):
self.device = device
self.chkpt_dir = Path(chkpt_dir)
self.checkpoint = torch.load(str(chkpt_dir / Path("m.pt")))
def __len__(self):
return len(self.checkpoint)
def __getitem__(self, key):
path = self.chkpt_dir / Path(self.checkpoint[key]).name
return torch.load(str(path), map_location=self.device)
def __setitem__(self, key, value):
return
def __delitem__(self, key, value):
return
def keys(self):
return self.checkpoint.keys()
def __iter__(self):
for key in self.checkpoint:
yield (key, self.__getitem__(key))
def __copy__(self):
return Checkpoint(self.chkpt_dir, device=self.device)
def copy(self):
return Checkpoint(self.chkpt_dir, device=self.device)
def infer(context, top_k=40, top_p=0.9, temp=1.0, gen_len=512,repetition_penalty=1):
start = time.time()
tokens = tokenizer(context, return_tensors="pt").input_ids
ids = tokens.cuda()
start = time.time()
#output = network.generate(batched_tokens, length, gen_len, {"top_p": np.ones(total_batch) * top_p, "temp": np.ones(total_batch) * temp})
output = model.generate(ids,
do_sample=True,
min_length=gen_len,
max_length=gen_len,
temperature=temp,
use_cache=True,
top_p= top_p,
repetition_penalty =1.5,
no_repeat_ngram_size=6,
max_time=60
)
samples = []
for i,out_seq in enumerate(output):
samples.append(tokenizer.decode(out_seq, skip_special_tokens=True))
#for o in decoded_tokens[:, :, 0]:
# samples.append(tokenizer.decode(o))
print(colored(f"completion done in {time.time() - start:06}s","green"))
return samples
def recursive_infer(initial_context, current_context=None, top_k=40, top_p=0.9, temp=1.0, gen_len=256, depth=0, max_depth=5,recursive_refresh=0,repetition_penalty=1):
lcc=0
ic = initial_context
cc = ''
if current_context :
lcc = len(current_context)
cc = current_context
print (colored("ENTER recursive_infer:{} {} {} {}".format(len(initial_context),lcc,depth,max_depth),"red"))
print (colored(" in_cc:{}".format(cc),"cyan"))
c=''
if not current_context :
c = initial_context
else:
if (recursive_refresh == 1):
c= initial_context + "\r\n ... \r\n"
c = c + current_context
print (colored("loc_c:{}".format(c),"yellow"))
loc_len = gen_len + (len(c) / 3)
i = infer( c, top_k, top_p, temp, gen_len,repetition_penalty)[0]
#yield i[len(c):]
#yield i
loc_ans = i[len(c):]
print (colored(" loc_i:{}".format(i),"white"))
print (colored(" loc_ans:{}".format(loc_ans),"white"))
if depth >= max_depth: return ''
#yield from recursive_infer(initial_context, i[len(c):],top_k, top_p, temp, gen_len, depth+1, max_depth,recursive_refresh,repetition_penalty)
recursive_ans = recursive_infer(initial_context, str(loc_ans),top_k, top_p, temp, gen_len, depth+1, max_depth,recursive_refresh,repetition_penalty)
returned_ans = str(loc_ans +' '+ recursive_ans)
print (colored(" returned_ans:{}".format(returned_ans),"cyan"))
print (colored("EXIT recursive_infer:{} {} {} {}".format(len(initial_context),lcc,depth,max_depth),"red"))
return returned_ans
#model = GPTNeoForCausalLM.from_pretrained(pretrained_model_name_or_path=None, config=config, state_dict=Checkpoint())
print(colored("loading GPTNeoForCausalLM.from_pretrained","magenta"))
print(colored(" loading from {}".format(check_point_dir),"green"))
model = GPTNeoForCausalLM.from_pretrained(pretrained_model_name_or_path=None, config=config, state_dict=Checkpoint(check_point_dir))
print(colored("loading GPT2Tokenizer.from_pretrained","magenta"))
#tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
# Initialize the tokenizer and set up the bad_words_ids to exclude Author's Note tags
tokenizer = AutoTokenizer.from_pretrained("gpt2")
vocab = tokenizer.get_vocab()
vocab_keys = vocab.keys()
find_keys = lambda char : [key for key in vocab_keys if key.find(char) != -1]
bad_words = []
bad_words_ids = []
bad_words.extend(find_keys("["))
bad_words.extend(find_keys(" ["))
bad_words.extend(find_keys("<|endoftext|>"))
for key in bad_words:
bad_id = vocab[key]
bad_words_ids.append([bad_id])
print(colored(" move to GPU","magenta"))
model.to(runtime_gpu)
print(colored(" >>>> DONE! <<<<", "green"))
print(colored("PRETEST: warming up processing pipeline","magenta"))
#warms up the processing on startup
pre_prompt = "I am the EleutherAI / GPT-J-6B based AI language model server. I will"
print (colored("PROMPT:"+pre_prompt,"yellow"))
print(colored(infer(pre_prompt)[0],"cyan"))
# app = Flask(__name__)
app = FastAPI()
#if connect_method == "Cloudflare":
# run_with_cloudflared(app)
#elif connect_method == "Ngrok":
# run_with_ngrok(app)
@app.route("/")
def home():
return "<h1>EleutherAI J6B Service Running!</h1>"
@app.route('/request',methods = ['POST'])
def koboldrequest(request: Request=None):
if request.method == 'POST':
try:
#clear_output()
js = request.json
txt = js["text"]
min = js["min"]
max = js["max"]
rep_pen = js["rep_pen"]
temp = js["temperature"]
top_p = js["top_p"]
# Compatability with un-updated clients
if("numseqs" in js):
numseqs = js["numseqs"]
else:
numseqs = 1
if("retfultxt" in js):
retfultxt = js["retfultxt"]
else:
retfultxt = True
print(colored("Received Data: {0}".format(txt), "yellow"))
torch.cuda.empty_cache()
print(colored("Generating text, please wait...", "green"))
tokens = tokenizer(txt, return_tensors="pt").input_ids.to("cpu")
ids = tokens.cuda()
gen_tokens = model.generate(
ids.long().cuda(),
do_sample=True,
min_length=min,
max_length=max,
temperature=temp,
top_p = top_p,
repetition_penalty = rep_pen,
use_cache=True,
bad_words_ids=bad_words_ids,
num_return_sequences=numseqs
).long()
genout = []
for tkns in gen_tokens:
if(not retfultxt):
# Strip context tokens out of returned sequences
dif = (len(tkns) - len(tokens[0])) * -1
tkns = tkns[dif:]
tkns = list(filter(lambda a: a != 50256, tkns))
genout.append(tokenizer.decode(tkns))
torch.cuda.empty_cache()
if(len(genout) > 0 and genout[0] != ""):
if(retfultxt):
# Outdated client, send old JSON format
print(colored("Generated Text: {0}".format(genout[0]), "cyan"))
response = app.response_class(
response=json.dumps({"data": {"text": genout[0]}}),
status=200,
mimetype='application/json'
)
else:
# New client format with numseq support
i = 0
for seq in genout:
print(colored("[Result {0}]\n{1}".format(i, seq), "cyan"))
i += 1
response = app.response_class(
response=json.dumps({"data": {"seqs": genout}}),
status=200,
mimetype='application/json'
)
return response
else:
print(colored("[ERROR] Something went wrong during generation!", "red"))
response = app.response_class(
response=json.dumps({"error": {"extensions": {"code": "Something went wrong during generation!"}}}),
status=400,
mimetype='application/json'
)
js = {}
tokens = []
ids = []
gen_tokens = []
genout = ""
response = {}
except Exception as e:
print(colored("[ERROR] Something went wrong during generation!", "red"))
print(colored("{0}".format(e), "red"))
response = app.response_class(
response=json.dumps({"error": {"extensions": {"code": "Something went wrong during generation! {0}".format(e)}}}),
status=400,
mimetype='application/json'
)
@app.post("/engines/completions")
async def read_completions(
#engine_id:str,
prompt:Optional[str] = None,
max_tokens: Optional[int]=16,
temperature: Optional[float]=1.0,
top_p:Optional[float]=1.0,
top_k:Optional[int]=40,
n:Optional[int]=1,
stream:Optional[bool]=False,
logprobs:Optional[int]=None,
echo:Optional[bool]=False,
stop:Optional[list]=None,
presence_penalty:Optional[float]=0.0001,
repetition_penalty:Optional[float]=1.0000,
best_of:Optional[int]=1,
recursive_depth:Optional[int]=0,
recursive_refresh:Optional[int]=0,
logit_bias:Optional[Dict[str,float]]=None,
request: Request=None
):
global active_model,model,tokenizer
response={}
response['params']= dict(request.query_params)
print(response)
text = str(prompt)
text = text.replace("|","\r\n")
prompt_len = len(text)
ids = tokenizer(text, return_tensors="pt").input_ids.to(runtime_gpu)
max_length = max_tokens + ids.shape[1]
do_sample=True
use_cache=True
start = time.time()
num_return_sequences=n
num_beams = n
num_beam_groups=n
if (recursive_depth== 0):
gen_tokens = model.generate(
ids,
do_sample=True,
min_length=max_length,
max_length=max_length,
temperature=temperature,
use_cache=True,
num_beams = num_beams,
num_return_sequences=num_return_sequences,
# num_beam_groups=num_beam_groups,
# early_stopping=True,
top_p=top_p,
# top_k=50,
repetition_penalty =repetition_penalty,
no_repeat_ngram_size=6,
max_time=60
)
else:
gen_tokens = []
# do it serial until we figure out parallel for recursive
for x in range(num_return_sequences):
ref_text = str(text)
gen_tokens.append( recursive_infer(initial_context=str(ref_text),
current_context=None,
top_p=top_p,top_k=top_k, temp=temperature,
gen_len=max_length,
depth=0,
max_depth = recursive_depth,
recursive_refresh=recursive_refresh,
repetition_penalty=repetition_penalty
))
last_prompt=text
choices=[]
gen_text=''
for i,out_seq in enumerate(gen_tokens):
choice={}
choice['prompt']=last_prompt
if (recursive_depth== 0):
choice['text']=tokenizer.decode(out_seq, skip_special_tokens=True)
else:
choice['text']=out_seq
choice['index']=i
choice['logprobs']=None
choice['finish_reason']='length'
choices.append(choice)
print("GenText[{}]:{}".format(i,choice['text']))
gen_text = gen_text + choice['text']
if (recursive_depth==0):
last_prompt = text
else:
last_prompt = text
#last_prompt = out_seq
#if (recursive_refresh==1):
# last_prompt = text +"\r\n ... \r\n"+out_seq
#gen_text = tokenizer.batch_decode(gen_tokens)[0]
fin = time.time()
elapsed = fin - start
cps = (len(gen_text)-prompt_len) / elapsed
print("elapsed:{} len:{} cps:{}".format(elapsed,len(gen_text),cps))
response['id']=''
response['object']='text_completion'
response['created']=''
response['model']= 'GPT-J-6B_HF' #args.model
response['choices']=choices
return(response)
print(colored("Model startup complete! Starting web service....", "green"))
# Setting an auth token allows us to open multiple
# tunnels at the same time
if (NGROK_AUTH_TOKEN is not None) and not ("xxxxxx" in NGROK_AUTH_TOKEN ) :
ngrok.set_auth_token(NGROK_AUTH_TOKEN)
public_url = ngrok.connect(SERVER_PORT)
print(colored("Public_URL = "+str(public_url), "cyan"))
nest_asyncio.apply()
#app.run()
#if __name__ == "__main__":
print(colored("Ready to Serve!", "green"))
uvicorn.run(app, host="0.0.0.0", port=SERVER_PORT)
print (colored("Happy Service!", "green"))
# http://localhost:9995/docs#/default/read_completions_engines_completions_post
# http://<NGROK_URL_ID>.ngrok.io/docs#/default/read_completions_engines_completions_post
# http://<NGROK_URL_ID>.ngrok.io/docs#/default/koboldrequest_request_post
@thefazzer
Copy link

Needed to use @app.api_route for some reason

@a0n
Copy link

a0n commented Aug 23, 2021

awesome!!!

@johndpope
Copy link

loading from ../j6b_ckpt
Traceback (most recent call last):
File "jserv-hf.py", line 287, in
model = GPTNeoForCausalLM.from_pretrained(pretrained_model_name_or_path=None, config=config, state_dict=Checkpoint(check_point_dir))
File "jserv-hf.py", line 201, in init
self.checkpoint = torch.load(str(chkpt_dir / Path("m.pt")))
File "/home/jp/miniconda3/envs/torch/lib/python3.8/site-packages/torch/serialization.py", line 594, in load
with _open_file_like(f, 'rb') as opened_file:
File "/home/jp/miniconda3/envs/torch/lib/python3.8/site-packages/torch/serialization.py", line 230, in _open_file_like
return _open_file(name_or_buffer, mode)
File "/home/jp/miniconda3/envs/torch/lib/python3.8/site-packages/torch/serialization.py", line 211, in init
super(_open_file, self).init(open(name, mode))
FileNotFoundError: [Errno 2] No such file or directory: '../j6b_ckpt/m.pt'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment