Created
February 6, 2022 11:10
-
-
Save kinoc/8d6015014fbfab4f48ee2561d509d3e2 to your computer and use it in GitHub Desktop.
Contradiction Detector using an HF roberta project by ynie @ FB/Meta
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForSequenceClassification # 4.0.1 | |
import torch # 1.7 | |
# use "contra activate dual" on laptop | |
# https://github.com/facebookresearch/ParlAI/issues/3391 | |
# https://github.com/facebookresearch/ParlAI/issues/3665 | |
# https://arxiv.org/abs/2012.13391 | |
# https://huggingface.co/ynie/roberta-large_conv_contradiction_detector_v0 | |
if __name__ == '__main__': | |
max_length = 256 | |
hg_model_hub_name = "ynie/roberta-large_conv_contradiction_detector_v0" | |
tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name) | |
model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name) | |
premiseList =["I'm an Spanish teacher.", | |
"I am at home.", | |
"I love my job.", | |
"I have no siblings", | |
"I found the treasure.", | |
"I am alone.", | |
"I am single.", | |
"I know python."] | |
# premise = "I'm an Spanish teacher." | |
while(True): | |
hypothesis = input("Hypo:") # "I don't know how to speak Spanish.","I only speak English","I am married",... | |
for premise in premiseList: | |
tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis, | |
max_length=max_length, | |
return_token_type_ids=True, truncation=True) | |
input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0) | |
# remember bart doesn't have 'token_type_ids', remove the line below if you are using bart. | |
token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0) | |
attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0) | |
outputs = model(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
labels=None) | |
predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() # batch_size only one | |
#print("Premise:", premise) | |
# print("Hypothesis:", hypothesis) | |
# print("Non contradiction:", predicted_probability[0]) | |
# print("Contradiction:", predicted_probability[1]) | |
thresh = 0.7 | |
if ( predicted_probability[1]>predicted_probability[0]): | |
if (predicted_probability[1]> thresh): | |
print(" |--->:",premise, predicted_probability[1],predicted_probability[0]) | |
else: | |
print(" | :",premise, predicted_probability[1],predicted_probability[0]) | |
else: | |
if (predicted_probability[0]> thresh): | |
print(" | *:",premise, predicted_probability[1],predicted_probability[0]) | |
else: | |
print(" | :",premise, predicted_probability[1],predicted_probability[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment