Created
February 4, 2019 23:55
-
-
Save kinow/9e3760ddfa036b82df0f587323e17ee6 to your computer and use it in GitHub Desktop.
csv benchmark 1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
asv continuous -f 1.1 upstream/master HEAD -b ^io.csv | |
· Creating environments | |
· Discovering benchmarks | |
· Running 32 total benchmarks (2 commits * 1 environments * 16 benchmarks) | |
[ 0.00%] · For pandas commit 2e38d555 (round 1/2): | |
[ 0.00%] ·· Building for conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt...................................................................... | |
[ 0.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt | |
[ 1.56%] ··· Running (io.csv.ReadCSVCategorical.time_convert_direct--).............. | |
[ 25.00%] ··· Running (io.csv.ToCSVDatetime.time_frame_date_formatting--). | |
[ 25.00%] · For pandas commit fe6fa7b7 <fix-issue-gh25099-csv-narep> (round 1/2): | |
[ 25.00%] ·· Building for conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt... | |
[ 25.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt | |
[ 26.56%] ··· Running (io.csv.ReadCSVCategorical.time_convert_direct--)............ | |
[ 46.88%] ··· Running (io.csv.ReadUint64Integers.time_read_uint64_neg_values--)... | |
[ 50.00%] · For pandas commit fe6fa7b7 <fix-issue-gh25099-csv-narep> (round 2/2): | |
[ 50.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt | |
[ 51.56%] ··· io.csv.ReadCSVCategorical.time_convert_direct 135±4ms | |
[ 53.12%] ··· io.csv.ReadCSVCategorical.time_convert_post 190±4ms | |
[ 54.69%] ··· io.csv.ReadCSVComment.time_comment 80.1±4ms | |
[ 56.25%] ··· io.csv.ReadCSVDInferDatetimeFormat.time_read_csv ok | |
[ 56.25%] ··· ======================= ============ ============ ============ | |
-- format | |
----------------------- -------------------------------------- | |
infer_datetime_format custom iso8601 ymd | |
======================= ============ ============ ============ | |
True 16.3±0.4ms 6.07±0.3ms 6.54±0.2ms | |
False 243±6ms 5.03±0.2ms 4.80±0.2ms | |
======================= ============ ============ ============ | |
[ 57.81%] ··· io.csv.ReadCSVFloatPrecision.time_read_csv ok | |
[ 57.81%] ··· ===== ============ ============ ================ ============ ============ ================ | |
-- decimal / float_precision | |
----- ------------------------------------------------------------------------------------- | |
sep . / None . / high . / round_trip _ / None _ / high _ / round_trip | |
===== ============ ============ ================ ============ ============ ================ | |
, 4.64±0.1ms 4.56±0.2ms 5.67±0.1ms 5.25±0.2ms 4.95±0.1ms 5.04±0.2ms | |
; 5.13±0.4ms 4.60±0.3ms 5.97±0.5ms 5.03±0.3ms 5.32±0.4ms 4.80±0.1ms | |
===== ============ ============ ================ ============ ============ ================ | |
[ 59.38%] ··· io.csv.ReadCSVFloatPrecision.time_read_csv_python_engine ok | |
[ 59.38%] ··· ===== ============ ============ ================ ============ ============ ================ | |
-- decimal / float_precision | |
----- ------------------------------------------------------------------------------------- | |
sep . / None . / high . / round_trip _ / None _ / high _ / round_trip | |
===== ============ ============ ================ ============ ============ ================ | |
, 12.3±0.4ms 12.6±0.7ms 12.6±0.6ms 11.7±0.6ms 10.9±0.4ms 10.3±0.3ms | |
; 12.9±0.8ms 12.7±1ms 12.9±2ms 11.2±0.2ms 10.9±0.4ms 10.6±1ms | |
===== ============ ============ ================ ============ ============ ================ | |
[ 60.94%] ··· io.csv.ReadCSVMemoryGrowth.mem_parser_chunks 0 | |
[ 62.50%] ··· io.csv.ReadCSVParseDates.time_baseline 4.37±0.07ms | |
[ 64.06%] ··· io.csv.ReadCSVParseDates.time_multiple_date 5.28±0.4ms | |
[ 65.62%] ··· io.csv.ReadCSVSkipRows.time_skipprows ok | |
[ 65.62%] ··· ========== ============ | |
skiprows | |
---------- ------------ | |
None 47.5±2ms | |
10000 33.5±0.9ms | |
========== ============ | |
[ 67.19%] ··· io.csv.ReadCSVThousands.time_thousands ok | |
[ 67.19%] ··· ===== ========== ========== | |
-- thousands | |
----- --------------------- | |
sep None , | |
===== ========== ========== | |
, 41.8±1ms 46.7±2ms | |
| 41.8±2ms 45.4±2ms | |
===== ========== ========== | |
[ 68.75%] ··· io.csv.ReadUint64Integers.time_read_uint64 9.30±0.4ms | |
[ 70.31%] ··· io.csv.ReadUint64Integers.time_read_uint64_na_values 13.6±0.6ms | |
[ 71.88%] ··· io.csv.ReadUint64Integers.time_read_uint64_neg_values 13.2±0.6ms | |
[ 73.44%] ··· io.csv.ToCSV.time_frame ok | |
[ 73.44%] ··· ======= ========== | |
kind | |
------- ---------- | |
wide 257±8ms | |
long 551±20ms | |
mixed 65.5±2ms | |
======= ========== | |
[ 75.00%] ··· io.csv.ToCSVDatetime.time_frame_date_formatting 37.6±0.7ms | |
[ 75.00%] · For pandas commit 2e38d555 (round 2/2): | |
[ 75.00%] ·· Building for conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt... | |
[ 75.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt | |
[ 76.56%] ··· io.csv.ReadCSVCategorical.time_convert_direct 119±1ms | |
[ 78.12%] ··· io.csv.ReadCSVCategorical.time_convert_post 171±5ms | |
[ 79.69%] ··· io.csv.ReadCSVComment.time_comment 75.0±2ms | |
[ 81.25%] ··· io.csv.ReadCSVDInferDatetimeFormat.time_read_csv ok | |
[ 81.25%] ··· ======================= ============ ============ ============ | |
-- format | |
----------------------- -------------------------------------- | |
infer_datetime_format custom iso8601 ymd | |
======================= ============ ============ ============ | |
True 15.4±0.3ms 5.57±0.2ms 5.59±0.2ms | |
False 231±3ms 4.79±0.2ms 4.58±0.1ms | |
======================= ============ ============ ============ | |
[ 82.81%] ··· io.csv.ReadCSVFloatPrecision.time_read_csv ok | |
[ 82.81%] ··· ===== ============= ============ ================ ============= ============ ================ | |
-- decimal / float_precision | |
----- --------------------------------------------------------------------------------------- | |
sep . / None . / high . / round_trip _ / None _ / high _ / round_trip | |
===== ============= ============ ================ ============= ============ ================ | |
, 4.40±0.07ms 4.71±0.2ms 5.51±0.1ms 4.84±0.09ms 5.18±0.3ms 5.13±0.2ms | |
; 4.39±0.1ms 4.48±0.2ms 5.80±0.3ms 4.90±0.04ms 5.02±0.2ms 5.17±0.5ms | |
===== ============= ============ ================ ============= ============ ================ | |
[ 84.38%] ··· io.csv.ReadCSVFloatPrecision.time_read_csv_python_engine ok | |
[ 84.38%] ··· ===== ============ ============ ================ ============ ============ ================ | |
-- decimal / float_precision | |
----- ------------------------------------------------------------------------------------- | |
sep . / None . / high . / round_trip _ / None _ / high _ / round_trip | |
===== ============ ============ ================ ============ ============ ================ | |
, 11.5±0.2ms 11.9±0.3ms 11.3±0.2ms 9.92±0.1ms 10.6±0.1ms 10.8±0.2ms | |
; 12.7±0.4ms 12.4±0.4ms 12.0±0.9ms 10.3±0.4ms 11.1±1ms 10.6±0.2ms | |
===== ============ ============ ================ ============ ============ ================ | |
[ 85.94%] ··· io.csv.ReadCSVMemoryGrowth.mem_parser_chunks 0 | |
[ 87.50%] ··· io.csv.ReadCSVParseDates.time_baseline 4.21±0.06ms | |
[ 89.06%] ··· io.csv.ReadCSVParseDates.time_multiple_date 4.97±0.2ms | |
[ 90.62%] ··· io.csv.ReadCSVSkipRows.time_skipprows ok | |
[ 90.62%] ··· ========== ========== | |
skiprows | |
---------- ---------- | |
None 44.1±1ms | |
10000 33.9±2ms | |
========== ========== | |
[ 92.19%] ··· io.csv.ReadCSVThousands.time_thousands ok | |
[ 92.19%] ··· ===== ========== ========== | |
-- thousands | |
----- --------------------- | |
sep None , | |
===== ========== ========== | |
, 42.6±1ms 42.9±2ms | |
| 41.4±1ms 44.6±2ms | |
===== ========== ========== | |
[ 93.75%] ··· io.csv.ReadUint64Integers.time_read_uint64 8.82±0.2ms | |
[ 95.31%] ··· io.csv.ReadUint64Integers.time_read_uint64_na_values 12.8±0.2ms | |
[ 96.88%] ··· io.csv.ReadUint64Integers.time_read_uint64_neg_values 12.9±0.5ms | |
[ 98.44%] ··· io.csv.ToCSV.time_frame ok | |
[ 98.44%] ··· ======= ============ | |
kind | |
------- ------------ | |
wide 251±4ms | |
long 524±6ms | |
mixed 63.8±0.7ms | |
======= ============ | |
[100.00%] ··· io.csv.ToCSVDatetime.time_frame_date_formatting 37.9±0.7ms | |
before after ratio | |
[2e38d555] [fe6fa7b7] | |
<fix-issue-gh25099-csv-narep> | |
+ 9.92±0.1ms 11.7±0.6ms 1.18 io.csv.ReadCSVFloatPrecision.time_read_csv_python_engine(',', '_', None) | |
+ 119±1ms 135±4ms 1.14 io.csv.ReadCSVCategorical.time_convert_direct | |
+ 171±5ms 190±4ms 1.11 io.csv.ReadCSVCategorical.time_convert_post | |
SOME BENCHMARKS HAVE CHANGED SIGNIFICANTLY. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment