Skip to content

Instantly share code, notes, and snippets.

@kirillrybin
Created December 3, 2014 12:25
Show Gist options
  • Save kirillrybin/4cb13d07d4a235ed9911 to your computer and use it in GitHub Desktop.
Save kirillrybin/4cb13d07d4a235ed9911 to your computer and use it in GitHub Desktop.
Character Controllers Scripts in C# for Unity3D
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
// Require a character controller to be attached to the same game object
[RequireComponent(typeof(CharacterController))]
[AddComponentMenu("Character/Character Motor")]
public class CharacterMotor : MonoBehaviour
{
// Does this script currently respond to input?
bool canControl = true;
bool useFixedUpdate = true;
// For the next variables, [System.NonSerialized] tells Unity to not serialize the variable or show it in the inspector view.
// Very handy for organization!
// The current global direction we want the character to move in.
[System.NonSerialized]
public Vector3 inputMoveDirection = Vector3.zero;
// Is the jump button held down? We use this interface instead of checking
// for the jump button directly so this script can also be used by AIs.
[System.NonSerialized]
public bool inputJump = false;
[System.Serializable]
public class CharacterMotorMovement
{
// The maximum horizontal speed when moving
public float maxForwardSpeed = 3.0f;
public float maxSidewaysSpeed = 2.0f;
public float maxBackwardsSpeed = 2.0f;
// Curve for multiplying speed based on slope(negative = downwards)
public AnimationCurve slopeSpeedMultiplier = new AnimationCurve(new Keyframe(-90, 1), new Keyframe(0, 1), new Keyframe(90, 0));
// How fast does the character change speeds? Higher is faster.
public float maxGroundAcceleration = 30.0f;
public float maxAirAcceleration = 20.0f;
// The gravity for the character
public float gravity = 9.81f;
public float maxFallSpeed = 20.0f;
// For the next variables, [System.NonSerialized] tells Unity to not serialize the variable or show it in the inspector view.
// Very handy for organization!
// The last collision flags returned from controller.Move
[System.NonSerialized]
public CollisionFlags collisionFlags;
// We will keep track of the character's current velocity,
[System.NonSerialized]
public Vector3 velocity;
// This keeps track of our current velocity while we're not grounded
[System.NonSerialized]
public Vector3 frameVelocity = Vector3.zero;
[System.NonSerialized]
public Vector3 hitPoint = Vector3.zero;
[System.NonSerialized]
public Vector3 lastHitPoint = new Vector3(Mathf.Infinity, 0, 0);
}
public CharacterMotorMovement movement = new CharacterMotorMovement();
public enum MovementTransferOnJump
{
None, // The jump is not affected by velocity of floor at all.
InitTransfer, // Jump gets its initial velocity from the floor, then gradualy comes to a stop.
PermaTransfer, // Jump gets its initial velocity from the floor, and keeps that velocity until landing.
PermaLocked // Jump is relative to the movement of the last touched floor and will move together with that floor.
}
// We will contain all the jumping related variables in one helper class for clarity.
[System.Serializable]
public class CharacterMotorJumping
{
// Can the character jump?
public bool enabled = true;
// How high do we jump when pressing jump and letting go immediately
public float baseHeight = 1.0f;
// We add extraHeight units(meters) on top when holding the button down longer while jumping
public float extraHeight = 4.1f;
// How much does the character jump out perpendicular to the surface on walkable surfaces?
// 0 means a fully vertical jump and 1 means fully perpendicular.
public float perpAmount = 0.0f;
// How much does the character jump out perpendicular to the surface on too steep surfaces?
// 0 means a fully vertical jump and 1 means fully perpendicular.
public float steepPerpAmount = 0.5f;
// For the next variables, [System.NonSerialized] tells Unity to not serialize the variable or show it in the inspector view.
// Very handy for organization!
// Are we jumping?(Initiated with jump button and not grounded yet)
// To see ifwe are just in the air(initiated by jumping OR falling) see the grounded variable.
[System.NonSerialized]
public bool jumping = false;
[System.NonSerialized]
public bool holdingJumpButton = false;
// the time we jumped at(Used to determine for how long to apply extra jump power after jumping.)
[System.NonSerialized]
public float lastStartTime = 0.0f;
[System.NonSerialized]
public float lastButtonDownTime = -100.0f;
[System.NonSerialized]
public Vector3 jumpDir = Vector3.up;
}
public CharacterMotorJumping jumping = new CharacterMotorJumping();
[System.Serializable]
public class CharacterMotorMovingPlatform
{
public bool enabled = true;
public MovementTransferOnJump movementTransfer = MovementTransferOnJump.PermaTransfer;
[System.NonSerialized]
public Transform hitPlatform;
[System.NonSerialized]
public Transform activePlatform;
[System.NonSerialized]
public Vector3 activeLocalPoint;
[System.NonSerialized]
public Vector3 activeGlobalPoint;
[System.NonSerialized]
public Quaternion activeLocalRotation;
[System.NonSerialized]
public Quaternion activeGlobalRotation;
[System.NonSerialized]
public Matrix4x4 lastMatrix;
[System.NonSerialized]
public Vector3 platformVelocity;
[System.NonSerialized]
public bool newPlatform;
}
public CharacterMotorMovingPlatform movingPlatform = new CharacterMotorMovingPlatform();
[System.Serializable]
public class CharacterMotorSliding
{
// Does the character slide on too steep surfaces?
public bool enabled = true;
// How fast does the character slide on steep surfaces?
public float slidingSpeed = 15.0f;
// How much can the player control the sliding direction?
// ifthe value is 0.5 the player can slide sideways with half the speed of the downwards sliding speed.
public float sidewaysControl = 1.0f;
// How much can the player influence the sliding speed?
// ifthe value is 0.5 the player can speed the sliding up to 150% or slow it down to 50%.
public float speedControl = 0.4f;
}
public CharacterMotorSliding sliding = new CharacterMotorSliding();
[System.NonSerialized]
public bool grounded = true;
[System.NonSerialized]
public Vector3 groundNormal = Vector3.zero;
private Vector3 lastGroundNormal = Vector3.zero;
private Transform tr;
private CharacterController controller;
void Awake()
{
controller = GetComponent<CharacterController>();
tr = transform;
}
private void UpdateFunction()
{
// We copy the actual velocity into a temporary variable that we can manipulate.
Vector3 velocity = movement.velocity;
// Update velocity based on input
velocity = ApplyInputVelocityChange(velocity);
// Apply gravity and jumping force
velocity = ApplyGravityAndJumping(velocity);
// Moving platform support
Vector3 moveDistance = Vector3.zero;
if(MoveWithPlatform())
{
Vector3 newGlobalPoint = movingPlatform.activePlatform.TransformPoint(movingPlatform.activeLocalPoint);
moveDistance = (newGlobalPoint - movingPlatform.activeGlobalPoint);
if(moveDistance != Vector3.zero)
controller.Move(moveDistance);
// Support moving platform rotation as well:
Quaternion newGlobalRotation = movingPlatform.activePlatform.rotation * movingPlatform.activeLocalRotation;
Quaternion rotationDiff = newGlobalRotation * Quaternion.Inverse(movingPlatform.activeGlobalRotation);
var yRotation = rotationDiff.eulerAngles.y;
if(yRotation != 0)
{
// Prevent rotation of the local up vector
tr.Rotate(0, yRotation, 0);
}
}
// Save lastPosition for velocity calculation.
Vector3 lastPosition = tr.position;
// We always want the movement to be framerate independent. Multiplying by Time.deltaTime does this.
Vector3 currentMovementOffset = velocity * Time.deltaTime;
// Find out how much we need to push towards the ground to avoid loosing grouning
// when walking down a step or over a sharp change in slope.
float pushDownOffset = Mathf.Max(controller.stepOffset, new Vector3(currentMovementOffset.x, 0, currentMovementOffset.z).magnitude);
if(grounded)
currentMovementOffset -= pushDownOffset * Vector3.up;
// Reset variables that will be set by collision function
movingPlatform.hitPlatform = null;
groundNormal = Vector3.zero;
// Move our character!
movement.collisionFlags = controller.Move(currentMovementOffset);
movement.lastHitPoint = movement.hitPoint;
lastGroundNormal = groundNormal;
if(movingPlatform.enabled && movingPlatform.activePlatform != movingPlatform.hitPlatform)
{
if(movingPlatform.hitPlatform != null)
{
movingPlatform.activePlatform = movingPlatform.hitPlatform;
movingPlatform.lastMatrix = movingPlatform.hitPlatform.localToWorldMatrix;
movingPlatform.newPlatform = true;
}
}
// Calculate the velocity based on the current and previous position.
// This means our velocity will only be the amount the character actually moved as a result of collisions.
Vector3 oldHVelocity = new Vector3(velocity.x, 0, velocity.z);
movement.velocity = (tr.position - lastPosition) / Time.deltaTime;
Vector3 newHVelocity = new Vector3(movement.velocity.x, 0, movement.velocity.z);
// The CharacterController can be moved in unwanted directions when colliding with things.
// We want to prevent this from influencing the recorded velocity.
if(oldHVelocity == Vector3.zero)
{
movement.velocity = new Vector3(0, movement.velocity.y, 0);
}
else
{
float projectedNewVelocity = Vector3.Dot(newHVelocity, oldHVelocity) / oldHVelocity.sqrMagnitude;
movement.velocity = oldHVelocity * Mathf.Clamp01(projectedNewVelocity) + movement.velocity.y * Vector3.up;
}
if(movement.velocity.y < velocity.y - 0.001)
{
if(movement.velocity.y < 0)
{
// Something is forcing the CharacterController down faster than it should.
// Ignore this
movement.velocity.y = velocity.y;
}
else
{
// The upwards movement of the CharacterController has been blocked.
// This is treated like a ceiling collision - stop further jumping here.
jumping.holdingJumpButton = false;
}
}
// We were grounded but just loosed grounding
if(grounded && !IsGroundedTest())
{
grounded = false;
// Apply inertia from platform
if(movingPlatform.enabled &&
(movingPlatform.movementTransfer == MovementTransferOnJump.InitTransfer ||
movingPlatform.movementTransfer == MovementTransferOnJump.PermaTransfer)
)
{
movement.frameVelocity = movingPlatform.platformVelocity;
movement.velocity += movingPlatform.platformVelocity;
}
SendMessage("OnFall", SendMessageOptions.DontRequireReceiver);
// We pushed the character down to ensure it would stay on the ground ifthere was any.
// But there wasn't so now we cancel the downwards offset to make the fall smoother.
tr.position += pushDownOffset * Vector3.up;
}
// We were not grounded but just landed on something
else if(!grounded && IsGroundedTest())
{
grounded = true;
jumping.jumping = false;
SubtractNewPlatformVelocity();
SendMessage("OnLand", SendMessageOptions.DontRequireReceiver);
}
// Moving platforms support
if(MoveWithPlatform())
{
// Use the center of the lower half sphere of the capsule as reference point.
// This works best when the character is standing on moving tilting platforms.
movingPlatform.activeGlobalPoint = tr.position + Vector3.up * (controller.center.y - controller.height * 0.5f + controller.radius);
movingPlatform.activeLocalPoint = movingPlatform.activePlatform.InverseTransformPoint(movingPlatform.activeGlobalPoint);
// Support moving platform rotation as well:
movingPlatform.activeGlobalRotation = tr.rotation;
movingPlatform.activeLocalRotation = Quaternion.Inverse(movingPlatform.activePlatform.rotation) * movingPlatform.activeGlobalRotation;
}
}
void FixedUpdate()
{
if(movingPlatform.enabled)
{
if(movingPlatform.activePlatform != null)
{
if(!movingPlatform.newPlatform)
{
// unused: Vector3 lastVelocity = movingPlatform.platformVelocity;
movingPlatform.platformVelocity = (
movingPlatform.activePlatform.localToWorldMatrix.MultiplyPoint3x4(movingPlatform.activeLocalPoint)
- movingPlatform.lastMatrix.MultiplyPoint3x4(movingPlatform.activeLocalPoint)
) / Time.deltaTime;
}
movingPlatform.lastMatrix = movingPlatform.activePlatform.localToWorldMatrix;
movingPlatform.newPlatform = false;
}
else
{
movingPlatform.platformVelocity = Vector3.zero;
}
}
if(useFixedUpdate)
UpdateFunction();
}
void Update()
{
if(!useFixedUpdate)
UpdateFunction();
}
private Vector3 ApplyInputVelocityChange(Vector3 velocity)
{
if(!canControl)
inputMoveDirection = Vector3.zero;
// Find desired velocity
Vector3 desiredVelocity;
if(grounded && TooSteep())
{
// The direction we're sliding in
desiredVelocity = new Vector3(groundNormal.x, 0, groundNormal.z).normalized;
// Find the input movement direction projected onto the sliding direction
var projectedMoveDir = Vector3.Project(inputMoveDirection, desiredVelocity);
// Add the sliding direction, the spped control, and the sideways control vectors
desiredVelocity = desiredVelocity + projectedMoveDir * sliding.speedControl + (inputMoveDirection - projectedMoveDir) * sliding.sidewaysControl;
// Multiply with the sliding speed
desiredVelocity *= sliding.slidingSpeed;
}
else
desiredVelocity = GetDesiredHorizontalVelocity();
if(movingPlatform.enabled && movingPlatform.movementTransfer == MovementTransferOnJump.PermaTransfer)
{
desiredVelocity += movement.frameVelocity;
desiredVelocity.y = 0;
}
if(grounded)
desiredVelocity = AdjustGroundVelocityToNormal(desiredVelocity, groundNormal);
else
velocity.y = 0;
// Enforce max velocity change
float maxVelocityChange = GetMaxAcceleration(grounded) * Time.deltaTime;
Vector3 velocityChangeVector = (desiredVelocity - velocity);
if(velocityChangeVector.sqrMagnitude > maxVelocityChange * maxVelocityChange)
{
velocityChangeVector = velocityChangeVector.normalized * maxVelocityChange;
}
// ifwe're in the air and don't have control, don't apply any velocity change at all.
// ifwe're on the ground and don't have control we do apply it - it will correspond to friction.
if(grounded || canControl)
velocity += velocityChangeVector;
if(grounded)
{
// When going uphill, the CharacterController will automatically move up by the needed amount.
// Not moving it upwards manually prevent risk of lifting off from the ground.
// When going downhill, DO move down manually, as gravity is not enough on steep hills.
velocity.y = Mathf.Min(velocity.y, 0);
}
return velocity;
}
private Vector3 ApplyGravityAndJumping(Vector3 velocity)
{
if(!inputJump || !canControl)
{
jumping.holdingJumpButton = false;
jumping.lastButtonDownTime = -100;
}
if(inputJump && jumping.lastButtonDownTime < 0 && canControl)
jumping.lastButtonDownTime = Time.time;
if(grounded)
velocity.y = Mathf.Min(0, velocity.y) - movement.gravity * Time.deltaTime;
else
{
velocity.y = movement.velocity.y - movement.gravity * Time.deltaTime;
// When jumping up we don't apply gravity for some time when the user is holding the jump button.
// This gives more control over jump height by pressing the button longer.
if(jumping.jumping && jumping.holdingJumpButton)
{
// Calculate the duration that the extra jump force should have effect.
// ifwe're still less than that duration after the jumping time, apply the force.
if(Time.time < jumping.lastStartTime + jumping.extraHeight / CalculateJumpVerticalSpeed(jumping.baseHeight))
{
// Negate the gravity we just applied, except we push in jumpDir rather than jump upwards.
velocity += jumping.jumpDir * movement.gravity * Time.deltaTime;
}
}
// Make sure we don't fall any faster than maxFallSpeed. This gives our character a terminal velocity.
velocity.y = Mathf.Max(velocity.y, -movement.maxFallSpeed);
}
if(grounded)
{
// Jump only ifthe jump button was pressed down in the last 0.2 seconds.
// We use this check instead of checking ifit's pressed down right now
// because players will often try to jump in the exact moment when hitting the ground after a jump
// and ifthey hit the button a fraction of a second too soon and no new jump happens as a consequence,
// it's confusing and it feels like the game is buggy.
if(jumping.enabled && canControl && (Time.time - jumping.lastButtonDownTime < 0.2))
{
grounded = false;
jumping.jumping = true;
jumping.lastStartTime = Time.time;
jumping.lastButtonDownTime = -100;
jumping.holdingJumpButton = true;
// Calculate the jumping direction
if(TooSteep())
jumping.jumpDir = Vector3.Slerp(Vector3.up, groundNormal, jumping.steepPerpAmount);
else
jumping.jumpDir = Vector3.Slerp(Vector3.up, groundNormal, jumping.perpAmount);
// Apply the jumping force to the velocity. Cancel any vertical velocity first.
velocity.y = 0;
velocity += jumping.jumpDir * CalculateJumpVerticalSpeed(jumping.baseHeight);
// Apply inertia from platform
if(movingPlatform.enabled &&
(movingPlatform.movementTransfer == MovementTransferOnJump.InitTransfer ||
movingPlatform.movementTransfer == MovementTransferOnJump.PermaTransfer)
)
{
movement.frameVelocity = movingPlatform.platformVelocity;
velocity += movingPlatform.platformVelocity;
}
SendMessage("OnJump", SendMessageOptions.DontRequireReceiver);
}
else
{
jumping.holdingJumpButton = false;
}
}
return velocity;
}
void OnControllerColliderHit(ControllerColliderHit hit)
{
if(hit.normal.y > 0 && hit.normal.y > groundNormal.y && hit.moveDirection.y < 0)
{
if((hit.point - movement.lastHitPoint).sqrMagnitude > 0.001 || lastGroundNormal == Vector3.zero)
groundNormal = hit.normal;
else
groundNormal = lastGroundNormal;
movingPlatform.hitPlatform = hit.collider.transform;
movement.hitPoint = hit.point;
movement.frameVelocity = Vector3.zero;
}
}
private IEnumerator SubtractNewPlatformVelocity()
{
// When landing, subtract the velocity of the new ground from the character's velocity
// since movement in ground is relative to the movement of the ground.
if(movingPlatform.enabled &&
(movingPlatform.movementTransfer == MovementTransferOnJump.InitTransfer ||
movingPlatform.movementTransfer == MovementTransferOnJump.PermaTransfer))
{
// if we landed on a new platform, we have to wait for two FixedUpdates
// before we know the velocity of the platform under the character
if(movingPlatform.newPlatform)
{
Transform platform = movingPlatform.activePlatform;
yield return new WaitForFixedUpdate();
yield return new WaitForFixedUpdate();
if(grounded && platform == movingPlatform.activePlatform)
yield break;
}
movement.velocity -= movingPlatform.platformVelocity;
}
}
private bool MoveWithPlatform()
{
return (movingPlatform.enabled
&& (grounded || movingPlatform.movementTransfer == MovementTransferOnJump.PermaLocked)
&& movingPlatform.activePlatform != null
);
}
private Vector3 GetDesiredHorizontalVelocity()
{
// Find desired velocity
Vector3 desiredLocalDirection = tr.InverseTransformDirection(inputMoveDirection);
float maxSpeed = MaxSpeedInDirection(desiredLocalDirection);
if(grounded)
{
// Modify max speed on slopes based on slope speed multiplier curve
var movementSlopeAngle = Mathf.Asin(movement.velocity.normalized.y) * Mathf.Rad2Deg;
maxSpeed *= movement.slopeSpeedMultiplier.Evaluate(movementSlopeAngle);
}
return tr.TransformDirection(desiredLocalDirection * maxSpeed);
}
private Vector3 AdjustGroundVelocityToNormal(Vector3 hVelocity, Vector3 groundNormal)
{
Vector3 sideways = Vector3.Cross(Vector3.up, hVelocity);
return Vector3.Cross(sideways, groundNormal).normalized * hVelocity.magnitude;
}
private bool IsGroundedTest()
{
return (groundNormal.y > 0.01);
}
float GetMaxAcceleration(bool grounded)
{
// Maximum acceleration on ground and in air
if(grounded)
return movement.maxGroundAcceleration;
else
return movement.maxAirAcceleration;
}
float CalculateJumpVerticalSpeed(float targetJumpHeight)
{
// From the jump height and gravity we deduce the upwards speed
// for the character to reach at the apex.
return Mathf.Sqrt(2 * targetJumpHeight * movement.gravity);
}
bool IsJumping()
{
return jumping.jumping;
}
bool IsSliding()
{
return (grounded && sliding.enabled && TooSteep());
}
bool IsTouchingCeiling()
{
return (movement.collisionFlags & CollisionFlags.CollidedAbove) != 0;
}
bool IsGrounded()
{
return grounded;
}
bool TooSteep()
{
return (groundNormal.y <= Mathf.Cos(controller.slopeLimit * Mathf.Deg2Rad));
}
Vector3 GetDirection()
{
return inputMoveDirection;
}
void SetControllable(bool controllable)
{
canControl = controllable;
}
// Project a direction onto elliptical quater segments based on forward, sideways, and backwards speed.
// The function returns the length of the resulting vector.
float MaxSpeedInDirection(Vector3 desiredMovementDirection)
{
if(desiredMovementDirection == Vector3.zero)
return 0;
else
{
float zAxisEllipseMultiplier = (desiredMovementDirection.z > 0 ? movement.maxForwardSpeed : movement.maxBackwardsSpeed) / movement.maxSidewaysSpeed;
Vector3 temp = new Vector3(desiredMovementDirection.x, 0, desiredMovementDirection.z / zAxisEllipseMultiplier).normalized;
float length = new Vector3(temp.x, 0, temp.z * zAxisEllipseMultiplier).magnitude * movement.maxSidewaysSpeed;
return length;
}
}
void SetVelocity(Vector3 velocity)
{
grounded = false;
movement.velocity = velocity;
movement.frameVelocity = Vector3.zero;
SendMessage("OnExternalVelocity");
}
}
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
// Require a character controller to be attached to the same game object
[RequireComponent(typeof(CharacterMotor))]
[AddComponentMenu("Character/FPS Input Controller")]
public class FPSInputController : MonoBehaviour
{
private CharacterMotor motor;
// Use this for initialization
void Awake()
{
motor = GetComponent<CharacterMotor>();
}
// Update is called once per frame
void Update()
{
// Get the input vector from kayboard or analog stick
Vector3 directionVector = new Vector3(Input.GetAxis("Horizontal"), 0, Input.GetAxis("Vertical"));
if (directionVector != Vector3.zero)
{
// Get the length of the directon vector and then normalize it
// Dividing by the length is cheaper than normalizing when we already have the length anyway
float directionLength = directionVector.magnitude;
directionVector = directionVector / directionLength;
// Make sure the length is no bigger than 1
directionLength = Mathf.Min(1.0f, directionLength);
// Make the input vector more sensitive towards the extremes and less sensitive in the middle
// This makes it easier to control slow speeds when using analog sticks
directionLength = directionLength * directionLength;
// Multiply the normalized direction vector by the modified length
directionVector = directionVector * directionLength;
}
// Apply the direction to the CharacterMotor
motor.inputMoveDirection = transform.rotation * directionVector;
motor.inputJump = Input.GetButton("Jump");
}
}
using UnityEngine;
using System.Collections;
/// MouseLook rotates the transform based on the mouse delta.
/// Minimum and Maximum values can be used to constrain the possible rotation
/// To make an FPS style character:
/// - Create a capsule.
/// - Add the MouseLook script to the capsule.
/// -> Set the mouse look to use LookX. (You want to only turn character but not tilt it)
/// - Add FPSInputController script to the capsule
/// -> A CharacterMotor and a CharacterController component will be automatically added.
/// - Create a camera. Make the camera a child of the capsule. Reset it's transform.
/// - Add a MouseLook script to the camera.
/// -> Set the mouse look to use LookY. (You want the camera to tilt up and down like a head. The character already turns.)
[AddComponentMenu("Camera-Control/Mouse Look")]
public class MouseLook : MonoBehaviour {
public enum RotationAxes { MouseXAndY = 0, MouseX = 1, MouseY = 2 }
public RotationAxes axes = RotationAxes.MouseXAndY;
public float sensitivityX = 15F;
public float sensitivityY = 15F;
public float minimumX = -360F;
public float maximumX = 360F;
public float minimumY = -60F;
public float maximumY = 60F;
float rotationY = 0F;
void Update ()
{
if (axes == RotationAxes.MouseXAndY)
{
float rotationX = transform.localEulerAngles.y + Input.GetAxis("Mouse X") * sensitivityX;
rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
rotationY = Mathf.Clamp (rotationY, minimumY, maximumY);
transform.localEulerAngles = new Vector3(-rotationY, rotationX, 0);
}
else if (axes == RotationAxes.MouseX)
{
transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityX, 0);
}
else
{
rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
rotationY = Mathf.Clamp (rotationY, minimumY, maximumY);
transform.localEulerAngles = new Vector3(-rotationY, transform.localEulerAngles.y, 0);
}
}
void Start ()
{
// Make the rigid body not change rotation
if (rigidbody)
rigidbody.freezeRotation = true;
}
}
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
// Require a character controller to be attached to the same game object
[RequireComponent(typeof(CharacterMotor))]
[AddComponentMenu("Character/Platform Input Controller")]
// This makes the character turn to face the current movement speed per default.
public class PlatformInputController : MonoBehaviour
{
public bool autoRotate = true;
public float maxRotationSpeed = 360.0f;
private CharacterMotor motor;
// Use this for initialization
void Awake()
{
motor = GetComponent<CharacterMotor>();
}
// Update is called once per frame
void Update()
{
// Get the input vector from kayboard or analog stick
Vector3 directionVector = new Vector3(Input.GetAxis("Horizontal"), Input.GetAxis("Vertical"), 0);
if (directionVector != Vector3.zero)
{
// Get the length of the directon vector and then normalize it
// Dividing by the length is cheaper than normalizing when we already have the length anyway
var directionLength = directionVector.magnitude;
directionVector = directionVector / directionLength;
// Make sure the length is no bigger than 1
directionLength = Mathf.Min(1, directionLength);
// Make the input vector more sensitive towards the extremes and less sensitive in the middle
// This makes it easier to control slow speeds when using analog sticks
directionLength = directionLength * directionLength;
// Multiply the normalized direction vector by the modified length
directionVector = directionVector * directionLength;
}
// Rotate the input vector into camera space so up is camera's up and right is camera's right
directionVector = Camera.main.transform.rotation * directionVector;
// Rotate input vector to be perpendicular to character's up vector
Quaternion camToCharacterSpace = Quaternion.FromToRotation(-Camera.main.transform.forward, transform.up);
directionVector = (camToCharacterSpace * directionVector);
// Apply the direction to the CharacterMotor
motor.inputMoveDirection = directionVector;
motor.inputJump = Input.GetButton("Jump");
// Set rotation to the move direction
if (autoRotate && directionVector.sqrMagnitude > 0.01)
{
Vector3 newForward = ConstantSlerp(transform.forward, directionVector, maxRotationSpeed * Time.deltaTime);
newForward = ProjectOntoPlane(newForward, transform.up);
transform.rotation = Quaternion.LookRotation(newForward, transform.up);
}
}
Vector3 ProjectOntoPlane(Vector3 v, Vector3 normal)
{
return v - Vector3.Project(v, normal);
}
Vector3 ConstantSlerp(Vector3 from, Vector3 to, float angle)
{
float value = Mathf.Min(1, angle / Vector3.Angle(from, to));
return Vector3.Slerp(from, to, value);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment