Skip to content

Instantly share code, notes, and snippets.

@kirk86
Forked from skaae/adam.py
Created June 27, 2016 18:43
Show Gist options
  • Save kirk86/8f0e6f007ee9c179d0f72cf52456afdc to your computer and use it in GitHub Desktop.
Save kirk86/8f0e6f007ee9c179d0f72cf52456afdc to your computer and use it in GitHub Desktop.
def adam(loss, all_params, learning_rate=0.001, b1=0.9, b2=0.999, e=1e-8,
gamma=1-1e-8):
"""
ADAM update rules
Default values are taken from [Kingma2014]
References:
[Kingma2014] Kingma, Diederik, and Jimmy Ba.
"Adam: A Method for Stochastic Optimization."
arXiv preprint arXiv:1412.6980 (2014).
http://arxiv.org/pdf/1412.6980v4.pdf
"""
updates = []
all_grads = theano.grad(loss, all_params)
alpha = learning_rate
t = theano.shared(np.float32(1))
b1_t = b1*gamma**(t-1) #(Decay the first moment running average coefficient)
for theta_previous, g in zip(all_params, all_grads):
m_previous = theano.shared(np.zeros(theta_previous.get_value().shape,
dtype=theano.config.floatX))
v_previous = theano.shared(np.zeros(theta_previous.get_value().shape,
dtype=theano.config.floatX))
m = b1_t*m_previous + (1 - b1_t)*g # (Update biased first moment estimate)
v = b2*v_previous + (1 - b2)*g**2 # (Update biased second raw moment estimate)
m_hat = m / (1-b1**t) # (Compute bias-corrected first moment estimate)
v_hat = v / (1-b2**t) # (Compute bias-corrected second raw moment estimate)
theta = theta_previous - (alpha * m_hat) / (T.sqrt(v_hat) + e) #(Update parameters)
updates.append((m_previous, m))
updates.append((v_previous, v))
updates.append((theta_previous, theta) )
updates.append((t, t + 1.))
return updates
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment