Created
October 25, 2023 05:09
-
-
Save kishida/46e7d540c64b7b7a9eda3be987bbbc6b to your computer and use it in GitHub Desktop.
ct2 chat
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# based on StableLM chat | |
# https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList | |
import ctranslate2 | |
print(f"Starting to load the model to memory") | |
model_name = "line-corporation/japanese-large-lm-3.6b-instruction-sft" | |
ct2_model = "line-3.6b-sft-ct2" | |
#ct2_model = "line-3.6b-sft-ct2-fp16" | |
#model_name = "matsuo-lab/weblab-10b-instruction-sft" | |
#ct2_model = "weblab-sft-ct2" | |
print (f"model: {model_name}\nct2: {ct2_model}") | |
generator = ctranslate2.Generator(ct2_model) | |
tok = AutoTokenizer.from_pretrained(model_name, use_fast = False) | |
print(f"Sucessfully loaded the model to the memory") | |
start_message = "" | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [50278, 50279, 50277, 1, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def user(message, history): | |
# Append the user's message to the conversation history | |
return "", history + [[message, ""]] | |
def chat(curr_system_message, history): | |
# Initialize a StopOnTokens object | |
stop = StopOnTokens() | |
# Construct the input message string for the model by concatenating the current system message and conversation history | |
curr_system_message = """ユーザー: 質問に答えたり要望を実現してください。 | |
システム: わかりました。 | |
""" | |
messages = curr_system_message + \ | |
"\n".join(["\n".join(["ユーザー: "+item[0], "システム: "+item[1]]) | |
for item in history]) | |
# Tokenize the messages string | |
# print(messages) | |
model_inputs = tok.encode(messages, add_special_tokens=False) | |
model_inputs = tok.convert_ids_to_tokens(model_inputs) | |
streamer = generator.generate_tokens( | |
model_inputs, | |
sampling_temperature=0.8, | |
sampling_topk=20, | |
max_length=1024, | |
) | |
# print(history) | |
# Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
# print(new_text) | |
if new_text.token_id == tok.eos_token_id: | |
continue | |
partial_text += tok.decode(new_text.token_id, add_special_tokens=False) | |
history[-1][1] = partial_text | |
# Yield an empty string to cleanup the message textbox and the updated conversation history | |
yield history | |
return partial_text | |
with gr.Blocks() as demo: | |
# history = gr.State([]) | |
gr.Markdown(f"## {model_name}") | |
chatbot = gr.Chatbot().style(height=500) | |
with gr.Row(): | |
with gr.Column(): | |
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", | |
show_label=False).style(container=False) | |
with gr.Column(): | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
stop = gr.Button("Stop") | |
clear = gr.Button("Clear") | |
system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=False, visible=False) | |
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) | |
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[ | |
submit_event, submit_click_event], queue=False) | |
clear.click(lambda: None, None, [chatbot], queue=False) | |
demo.queue(max_size=32, concurrency_count=2) | |
demo.launch() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment