Created
August 9, 2017 02:30
-
-
Save kisimple/0f1f28f2b8e515e48defa6b4c546dbcc to your computer and use it in GitHub Desktop.
org.apache.spark.examples.sql.DefaultSource
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.apache.spark.examples.sql | |
import java.util.Locale | |
import scala.collection.mutable.ArrayBuffer | |
import org.apache.spark.internal.Logging | |
import org.apache.spark.rdd.RDD | |
import org.apache.spark.sql.{Row, SparkSession, SQLContext} | |
import org.apache.spark.sql.sources._ | |
import org.apache.spark.sql.types._ | |
import org.apache.spark.unsafe.types.UTF8String | |
class DefaultSource extends RelationProvider { | |
override def createRelation(sqlContext: SQLContext, | |
parameters: Map[String, String]): BaseRelation = { | |
ComplicatedScan(parameters("from").toInt, parameters("to").toInt)(sqlContext.sparkSession) | |
} | |
} | |
case class ComplicatedScan(from: Int, to: Int)(@transient val sparkSession: SparkSession) | |
extends BaseRelation | |
with Logging | |
with PrunedFilteredScan | |
with AggregatedFilteredScan { | |
override def sqlContext: SQLContext = sparkSession.sqlContext | |
override def schema: StructType = | |
StructType( | |
StructField("a", IntegerType, nullable = true) :: | |
StructField("b", LongType, nullable = false) :: | |
StructField("c", StringType, nullable = false) :: | |
StructField("d", DoubleType, nullable = false) :: | |
StructField("e", DataTypes.createDecimalType(), nullable = false) :: | |
StructField("g", IntegerType, nullable = false) :: | |
StructField("f", FloatType, nullable = false) :: | |
StructField("i", ByteType, nullable = false) :: | |
StructField("j", ShortType, nullable = false) :: Nil) | |
override def unhandledFilters(filters: Array[Filter]): Array[Filter] = { | |
def unhandled(filter: Filter): Boolean = { | |
filter match { | |
case EqualTo(col, v) => col == "b" | |
case EqualNullSafe(col, v) => col == "b" | |
case LessThan(col, v: Int) => col == "b" | |
case LessThanOrEqual(col, v: Int) => col == "b" | |
case GreaterThan(col, v: Int) => col == "b" | |
case GreaterThanOrEqual(col, v: Int) => col == "b" | |
case In(col, values) => col == "b" | |
case IsNull(col) => col == "b" | |
case IsNotNull(col) => col == "b" | |
case Not(pred) => unhandled(pred) | |
case And(left, right) => unhandled(left) || unhandled(right) | |
case Or(left, right) => unhandled(left) || unhandled(right) | |
case _ => false | |
} | |
} | |
filters.filter(unhandled) | |
} | |
override def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row] = { | |
val rowBuilders = requiredColumns.map { | |
case "a" => (i: Int) => Seq(i) | |
case "b" => (i: Int) => Seq(i * 2) | |
case "c" => (i: Int) => | |
val c = (i - 1 + 'a').toChar.toString | |
Seq(c * 5 + c.toUpperCase(Locale.ROOT) * 5) | |
} | |
// Predicate test on integer column | |
def translateFilterOnA(filter: Filter): Int => Boolean = filter match { | |
case EqualTo("a", v) => (a: Int) => a == v | |
case EqualNullSafe("a", v) => (a: Int) => a == v | |
case LessThan("a", v: Int) => (a: Int) => a < v | |
case LessThanOrEqual("a", v: Int) => (a: Int) => a <= v | |
case GreaterThan("a", v: Int) => (a: Int) => a > v | |
case GreaterThanOrEqual("a", v: Int) => (a: Int) => a >= v | |
case In("a", values) => (a: Int) => values.map(_.asInstanceOf[Int]).toSet.contains(a) | |
case IsNull("a") => (a: Int) => false // Int can't be null | |
case IsNotNull("a") => (a: Int) => true | |
case Not(pred) => (a: Int) => !translateFilterOnA(pred)(a) | |
case And(left, right) => (a: Int) => | |
translateFilterOnA(left)(a) && translateFilterOnA(right)(a) | |
case Or(left, right) => (a: Int) => | |
translateFilterOnA(left)(a) || translateFilterOnA(right)(a) | |
case _ => (a: Int) => true | |
} | |
// Predicate test on string column | |
def translateFilterOnC(filter: Filter): String => Boolean = filter match { | |
case StringStartsWith("c", v) => _.startsWith(v) | |
case StringEndsWith("c", v) => _.endsWith(v) | |
case StringContains("c", v) => _.contains(v) | |
case EqualTo("c", v: String) => _.equals(v) | |
case EqualTo("c", v: UTF8String) => sys.error("UTF8String should not appear in filters") | |
case In("c", values) => (s: String) => values.map(_.asInstanceOf[String]).toSet.contains(s) | |
case _ => (c: String) => true | |
} | |
def eval(a: Int) = { | |
val c = (a - 1 + 'a').toChar.toString * 5 + | |
(a - 1 + 'a').toChar.toString.toUpperCase(Locale.ROOT) * 5 | |
filters.forall(translateFilterOnA(_)(a)) && filters.forall(translateFilterOnC(_)(c)) | |
} | |
sparkSession.sparkContext.parallelize(from to to).filter(eval).map(i => | |
Row.fromSeq(rowBuilders.map(_(i)).reduceOption(_ ++ _).getOrElse(Seq.empty))) | |
} | |
override def buildScan(groupingColumns: Array[String], | |
aggregateFunctions: Array[AggregateFunc], | |
filters: Array[Filter]): RDD[Row] = { | |
val rowBuilders = Array("a", "b", "c", "d", "e", "g", "f", "i", "j").map { | |
case "a" => (i: Int) => Seq(i) | |
case "b" => (i: Int) => Seq(i) | |
case "c" => (i: Int) => | |
val c = (i % 2 + 'a').toChar.toString | |
Seq(c * 5 + c.toUpperCase * 5) | |
case "d" => (i: Int) => Seq(i) | |
case "e" => (i: Int) => Seq(i) | |
case "g" => (i: Int) => Seq(i % 2) | |
case "f" => (i: Int) => Seq(i) | |
case "i" => (i: Int) => Seq(i) | |
case "j" => (i: Int) => Seq(i) | |
} | |
// Predicate test on integer column | |
def translateFilterOnA(filter: Filter): Int => Boolean = filter match { | |
case EqualTo("a", v) => (a: Int) => a == v | |
case EqualNullSafe("a", v) => (a: Int) => a == v | |
case LessThan("a", v: Int) => (a: Int) => a < v | |
case LessThanOrEqual("a", v: Int) => (a: Int) => a <= v | |
case GreaterThan("a", v: Int) => (a: Int) => a > v | |
case GreaterThanOrEqual("a", v: Int) => (a: Int) => a >= v | |
case In("a", values) => (a: Int) => values.map(_.asInstanceOf[Int]).toSet.contains(a) | |
case IsNull("a") => (a: Int) => a == 7 // use 7 as NULL | |
case IsNotNull("a") => (a: Int) => a != 7 | |
case Not(pred) => (a: Int) => !translateFilterOnA(pred)(a) | |
case And(left, right) => (a: Int) => | |
translateFilterOnA(left)(a) && translateFilterOnA(right)(a) | |
case Or(left, right) => (a: Int) => | |
translateFilterOnA(left)(a) || translateFilterOnA(right)(a) | |
case _ => (a: Int) => true | |
} | |
// Predicate test on string column | |
def translateFilterOnC(filter: Filter): String => Boolean = filter match { | |
case StringStartsWith("c", v) => _.startsWith(v) | |
case StringEndsWith("c", v) => _.endsWith(v) | |
case StringContains("c", v) => _.contains(v) | |
case EqualTo("c", v: String) => _.equals(v) | |
case EqualTo("c", v: UTF8String) => sys.error("UTF8String should not appear in filters") | |
case In("c", values) => (s: String) => values.map(_.asInstanceOf[String]).toSet.contains(s) | |
case _ => (c: String) => true | |
} | |
def eval(a: Int) = { | |
val c = (a % 2 + 'a').toChar.toString * 5 + (a % 2 + 'a').toChar.toString.toUpperCase * 5 | |
filters.forall(translateFilterOnA(_)(a)) && filters.forall(translateFilterOnC(_)(c)) | |
} | |
def columnIndex(c: String): Int = c match { | |
case "a" => 0 | |
case "b" => 1 | |
case "c" => 2 | |
case "d" => 3 | |
case "e" => 4 | |
case "g" => 5 | |
case "f" => 6 | |
case "i" => 7 | |
case "j" => 8 | |
} | |
val filtered = sparkSession.sparkContext.parallelize(from to to).filter(eval).map { i => | |
rowBuilders.map(_(i)).reduceOption(_ ++ _).getOrElse(Seq.empty) | |
} | |
val grouped = | |
if (groupingColumns.isEmpty) { | |
filtered.map(r => ("NoSuchKey", r)) | |
} else { | |
filtered.map(r => (groupingColumns.map(c => r(columnIndex(c))).mkString("+"), | |
r ++ groupingColumns.map(c => r(columnIndex(c))))) | |
} | |
val l = groupingColumns.length | |
val aggregated = grouped.groupByKey() | |
.map { case (k, it) => | |
val ar = new ArrayBuffer[Any] | |
if(l > 0) { | |
for (i <- 0 until l) { | |
// grouping columns | |
ar += it.head(i + schema.fields.length) | |
} | |
} | |
aggregateFunctions.foreach { | |
case Sum(c, t) => | |
val i = columnIndex(c) | |
var sum = 0 | |
it.foreach { r => sum += r(i).asInstanceOf[Int] } | |
t match { | |
case LongType => ar += java.lang.Long.valueOf(sum) | |
case DoubleType => ar += java.lang.Double.valueOf(sum) | |
case dt: DecimalType => ar += java.math.BigDecimal.valueOf(sum) | |
} | |
case Count(c) => c match { | |
case "a" => | |
var count = 0 | |
it.foreach { r => if (r(0) != 7) count += 1 } // use 7 as NULL | |
ar += java.lang.Long.valueOf(count) | |
case _ => | |
ar += java.lang.Long.valueOf(it.size) | |
} | |
case CountStar() => | |
ar += java.lang.Long.valueOf(it.size) | |
case Max(c) => | |
val i = columnIndex(c) | |
var max = java.lang.Integer.MIN_VALUE | |
it.foreach { r => if (r(i).asInstanceOf[Int] > max) max = r(i).asInstanceOf[Int] } | |
c match { | |
case "a" => ar += java.lang.Integer.valueOf(max) | |
case "b" => ar += java.lang.Long.valueOf(max) | |
case "d" => ar += java.lang.Double.valueOf(max) | |
case "e" => ar += java.math.BigDecimal.valueOf(max) | |
case "f" => ar += java.lang.Float.valueOf(max) | |
case "i" => ar += java.lang.Byte.valueOf(max.toByte) | |
case "j" => ar += java.lang.Short.valueOf(max.toShort) | |
} | |
case Min(c) => | |
val i = columnIndex(c) | |
var min = java.lang.Integer.MAX_VALUE | |
it.foreach { r => if (r(i).asInstanceOf[Int] < min) min = r(i).asInstanceOf[Int] } | |
c match { | |
case "a" => ar += java.lang.Integer.valueOf(min) | |
case "b" => ar += java.lang.Long.valueOf(min) | |
case "d" => ar += java.lang.Double.valueOf(min) | |
case "e" => ar += java.math.BigDecimal.valueOf(min) | |
case "f" => ar += java.lang.Float.valueOf(min) | |
case "i" => ar += java.lang.Byte.valueOf(min.toByte) | |
case "j" => ar += java.lang.Short.valueOf(min.toShort) | |
} | |
} | |
(k, ar) | |
} | |
aggregated.map { case (_, aggResult) => | |
Row.fromSeq(aggResult) | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment