Skip to content

Instantly share code, notes, and snippets.

@kiyoon
Last active March 28, 2022 15:07
Show Gist options
  • Save kiyoon/0499660152c66ec7be1aba5c218b9e6e to your computer and use it in GitHub Desktop.
Save kiyoon/0499660152c66ec7be1aba5c218b9e6e to your computer and use it in GitHub Desktop.
#!/bin/bash
# If you don't have conda installed, run these in advance.
#wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
#bash Miniconda3-latest-Linux-x86_64.sh
# Run the script using `source epic_viewer_setup.sh`.
if [[ "${BASH_SOURCE[0]}" == "${0}" ]]
then
echo "Please run script like: source $0"
exit 1
fi
# IMPORTANT: Replace URLs
# split-N
epic_viewer_URL='https://...'
split_pkl_URL='https://'
split_tar_URL='https://'
# Extract epic_viewer.tar.gz
cd ~
wget "$epic_viewer_URL" -O epic_viewer.tar.gz
tar xvzf epic_viewer.tar.gz
cd epic_viewer-1.0.2
# Install epic_viewer
conda create -n epic_viewer python=3 -y
conda activate epic_viewer
pip install -e .
cd submodules/video_datasets_api
pip install -e .
# Download video and split data
cd ../../data
wget --content-disposition "$split_pkl_URL"
wget "$split_tar_URL" -O split.tar
mkdir videos
tar xvf split.tar -C videos
# Optionally, installing Pillow-SIMD makes video loading so much faster.
# You may see an error if you don't have gcc installed.
conda uninstall -y --force pillow pil jpeg libtiff libjpeg-turbo
pip uninstall -y pillow pil jpeg libtiff libjpeg-turbo
conda install -yc conda-forge libjpeg-turbo
CFLAGS="${CFLAGS} -mavx2" pip install --upgrade --no-cache-dir --force-reinstall --no-binary :all: --compile pillow-simd
conda install -y jpeg libtiff
# Run the program
cd ../tools
./epic_multilabel.py
# The program will ask you for video path and split.pkl path. It's in ../data/videos and ../data/split-N.pkl.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment