Created
December 16, 2023 04:00
-
-
Save kiyoon/5c79f4cf79b93c3f84c06ed40ec5eb5f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorrt as trt | |
import torch | |
import tqdm | |
logger = trt.Logger(trt.Logger.WARNING) | |
runtime = trt.Runtime(logger) | |
with open("vae_encoder_engine.trt", "rb") as f: | |
serialized_engine = f.read() | |
# load libnvinfer so we can deserialize engine | |
trt.init_libnvinfer_plugins(None, "") | |
engine = runtime.deserialize_cuda_engine(serialized_engine) | |
context = engine.create_execution_context() | |
# Allocate memory for inputs and outputs | |
for index in range(engine.num_io_tensors): | |
name = engine.get_tensor_name(index) | |
print(f"{name} {engine.get_tensor_dtype(name)} {engine.get_tensor_shape(name)}") | |
input_name = "input" | |
output_name = "output" | |
input_shape = (1, 3, 1024, 1024) | |
output_shape = (1, 8, 128, 128) | |
input_buf = torch.randn(input_shape, dtype=torch.float32).cuda() | |
output_buf = torch.empty(output_shape, dtype=torch.float32).cuda() | |
context.set_tensor_address(input_name, input_buf.data_ptr()) | |
context.set_tensor_address(output_name, output_buf.data_ptr()) | |
stream = torch.cuda.Stream() | |
for i in tqdm.tqdm(range(1000)): | |
context.execute_async_v3(stream_handle=stream.cuda_stream) | |
stream.synchronize() | |
print(output_buf.shape) | |
print(output_buf) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment