Last active
January 23, 2020 06:16
-
-
Save kiyukuta/6170759 to your computer and use it in GitHub Desktop.
Minimum implementation of denoising autoencoder.Error function is cross-entropy of reconstruction.Optimizing by SGD with mini-batch.Dataset is available at http://deeplearning.net/data/mnist/mnist.pkl.gz
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#coding: utf8 | |
""" | |
1. Download this gist. | |
2. Get the MNIST data. | |
wget http://deeplearning.net/data/mnist/mnist.pkl.gz | |
3. Run this code. | |
python autoencoder.py 100 -e 1 -b 20 -v | |
""" | |
import numpy | |
import argparse | |
import cPickle as pickle | |
import utils | |
class Autoencoder(object): | |
def __init__(self, n_visible = 784, n_hidden = 784, \ | |
W1 = None, W2 = None, b1 =None, b2 = None, | |
noise = 0.0, untied = False): | |
self.rng = numpy.random.RandomState(1) | |
r = numpy.sqrt(6. / (n_hidden + n_visible + 1)) | |
if W1 == None: | |
self.W1 = self.random_init(r, (n_hidden, n_visible)) | |
if W2 == None: | |
if untied: | |
W2 = self.random_init(r, (n_visible, n_hidden)) | |
else: | |
W2 = self.W1.T | |
self.W2 = W2 | |
if b1 == None: | |
self.b1 = numpy.zeros(n_hidden) | |
if b2 == None: | |
self.b2 = numpy.zeros(n_visible) | |
self.n_visible = n_visible | |
self.n_hidden = n_hidden | |
self.alpha = 0.1 | |
self.noise = noise | |
self.untied = untied | |
def random_init(self, r, size): | |
return numpy.array(self.rng.uniform(low = -r, high = r, size=size)) | |
def sigmoid(self, x): | |
return 1. / (1. + numpy.exp(-x)) | |
def sigmoid_prime(self, x): | |
return x * (1. - x) | |
def corrupt(self, x, noise): | |
return self.rng.binomial(size = x.shape, n = 1, p = 1.0 - noise) * x | |
def encode(self, x): | |
return self.sigmoid(numpy.dot(self.W1, x) + self.b1) | |
def decode(self, y): | |
return self.sigmoid(numpy.dot(self.W2, y) + self.b2) | |
def get_cost(self, x, z): | |
eps = 1e-10 | |
return - numpy.sum((x * numpy.log(z + eps) + (1.-x) * numpy.log(1.-z + eps))) | |
def get_cost_and_grad(self, x_batch, dnum): | |
cost = 0. | |
grad_W1 = numpy.zeros(self.W1.shape) | |
grad_W2 = numpy.zeros(self.W2.shape) | |
grad_b1 = numpy.zeros(self.b1.shape) | |
grad_b2 = numpy.zeros(self.b2.shape) | |
for x in x_batch: | |
tilde_x = self.corrupt(x, self.noise) | |
p = self.encode(tilde_x) | |
y = self.decode(p) | |
cost += self.get_cost(x,y) | |
delta1 = - (x - y) | |
if self.untied: | |
grad_W2 += numpy.outer(delta1, p) | |
else: | |
grad_W1 += numpy.outer(delta1, p).T | |
grad_b2 += delta1 | |
delta2 = numpy.dot(self.W2.T, delta1) * self.sigmoid_prime(p) | |
grad_W1 += numpy.outer(delta2, tilde_x) | |
grad_b1 += delta2 | |
cost /= len(x_batch) | |
grad_W1 /= len(x_batch) | |
grad_W2 /= len(x_batch) | |
grad_b1 /= len(x_batch) | |
grad_b2 /= len(x_batch) | |
return cost, grad_W1, grad_W2, grad_b1, grad_b2 | |
def train(self, X, epochs = 15, batch_size = 20): | |
batch_num = len(X) / batch_size | |
for epoch in range(epochs): | |
total_cost = 0.0 | |
for i in range(batch_num): | |
batch = X[i*batch_size : (i+1)*batch_size] | |
cost, gradW1, gradW2, gradb1, gradb2 = \ | |
self.get_cost_and_grad(batch, len(X)) | |
total_cost += cost | |
self.W1 -= self.alpha * gradW1 | |
self.W2 -= self.alpha * gradW2 | |
self.b1 -= self.alpha * gradb1 | |
self.b2 -= self.alpha * gradb2 | |
grad_sum = gradW1.sum() + gradW2.sum() + gradb1.sum() + gradb2.sum() | |
print epoch, | |
print (1. / batch_num) * total_cost | |
def dump_weights(self, save_path): | |
with open(save_path, 'w') as f: | |
d = { | |
"W1" : self.W1, | |
"W2" : self.W2, | |
"b1" : self.b1, | |
"b2" : self.b2, | |
} | |
pickle.dump(d, f) | |
def visualize_weights(self): | |
tile_size = (int(numpy.sqrt(self.W1[0].size)), int(numpy.sqrt(self.W1[0].size))) | |
panel_shape = (10, 10) | |
return utils.visualize_weights(self.W1, panel_shape, tile_size) | |
#panel_shape = (int(numpy.sqrt(self.W1.shape[0])), int(numpy.sqrt(self.W1.shape[0]))) | |
#return utils.visualize_weights(self.W1, panel_shape, tile_size) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("n_hidden", type = int) | |
parser.add_argument("-e", "--epochs", type = int, default = 15) | |
parser.add_argument("-b", "--batch_size", type = int, default = 20) | |
parser.add_argument("-n", "--noise", type=float, choices=[i/10. for i in xrange(11)], default = 0.0) | |
parser.add_argument('-o', '--output', type = unicode) | |
parser.add_argument('-v', '--visualize', action = "store_true") | |
parser.add_argument('-u', '--untied', action = "store_true") | |
args = parser.parse_args() | |
train_data, test_data, valid_data = utils.load_data() | |
ae = Autoencoder(n_hidden = args.n_hidden, noise = args.noise, untied = args.untied) | |
try: | |
ae.train(train_data[0], epochs = args.epochs, batch_size = args.batch_size) | |
except KeyboardInterrupt: | |
exit() | |
pass | |
save_name = args.output | |
if save_name == None: | |
save_name = '%sh%d_e%d_b%d_n%d'%( | |
'untied_' if args.untied else 'tied_', | |
args.n_hidden, | |
args.epochs, | |
args.batch_size, | |
args.noise*100, | |
) | |
img = ae.visualize_weights() | |
img.save(save_name + ".bmp") | |
if args.visualize: | |
img.show() | |
ae.dump_weights(save_name + '.pkl') | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
import cPickle as pickle | |
import gzip | |
import Image | |
def load_data(): | |
with gzip.open('mnist.pkl.gz', 'rb') as f: | |
tr,te,vl = pickle.load(f) | |
return tr, te, vl | |
def visualize_weights(weights, panel_shape, tile_size): | |
def scale(x): | |
eps = 1e-8 | |
x = x.copy() | |
x -= x.min() | |
x *= 1.0 / (x.max() + eps) | |
return 255.0*x | |
margin_y = numpy.zeros(tile_size[1]) | |
margin_x = numpy.zeros((tile_size[0] + 1) * panel_shape[0]) | |
image = margin_x.copy() | |
for y in range(panel_shape[1]): | |
tmp = numpy.hstack( [ numpy.c_[ scale( x.reshape(tile_size) ), margin_y ] | |
for x in weights[y*panel_shape[0]:(y+1)*panel_shape[0]]]) | |
tmp = numpy.vstack([tmp, margin_x]) | |
image = numpy.vstack([image, tmp]) | |
img = Image.fromarray(image) | |
img = img.convert('RGB') | |
return img |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Ad hoc code for gradient checking. | |
""" | |
from autoencoder import Autoencoder | |
import utils | |
import numpy | |
tr, te, vl = utils.load_data() | |
ae = Autoencoder(n_hidden = 50) | |
#ae = Autoencoder(n_hidden = 50, untied = True) | |
x = [tr[0][0]] | |
noise = 0.0 | |
tilde_x = [ae.corrupt(x[0], noise)] | |
c, gW1, gW2, gb1, gb2 = ae.get_cost_and_grad(tilde_x, len(tr[0])) | |
print c | |
epsilon = 1e-4 | |
print "W1" | |
for i in range(len(ae.W1)): | |
for j in range(len(ae.W1[i])): | |
ae.W1[i][j] += epsilon | |
y = ae.decode(ae.encode(tilde_x[0])) | |
e_p = ae.get_cost(x[0], y) | |
ae.W1[i][j] -= 2. * epsilon | |
y = ae.decode(ae.encode(tilde_x[0])) | |
e_m = ae.get_cost(x[0], y) | |
g = ( e_p - e_m ) / (2. * epsilon) | |
ae.W1[i][j] += epsilon | |
diff = gW1[i][j] - g | |
if numpy.absolute(diff) >= epsilon**2: | |
print i,j, gW1[i][j], g, diff | |
print "W2" | |
for i in range(len(ae.W2)): | |
for j in range(len(ae.W2[i])): | |
ae.W2[i][j] += epsilon | |
e_p = ae.get_cost(tilde_x[0], x[0]) | |
ae.W2[i][j] -= 2 * epsilon | |
e_m = ae.get_cost(tilde_x[0], x[0]) | |
g = ( e_p - e_m ) / (2 * epsilon) | |
ae.W2[i][j] += epsilon | |
diff = gW2[i][j] - g | |
if numpy.absolute(diff) >= epsilon**2: | |
print i,j, gW2[i][j], g, diff |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment