Last active
September 27, 2015 05:25
-
-
Save kjw0612/c6038bf00711803687cd to your computer and use it in GitHub Desktop.
Inverting Alexnet. Paper: Inverting Convolutional Networks with Convolutional Networks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CaffeNet" | |
layers { | |
name: "data" | |
type: DATA | |
top: "data" | |
data_param { | |
source: "/misc/lmbraid10/dosovits/Datasets/ILSVRC2012/all/val_leveldb" | |
backend: LEVELDB | |
batch_size: 16 | |
crop_size: 227 | |
mean_file: "/misc/lmbraid10/dosovits/Datasets/ILSVRC2012/all/imagenet_mean.binaryproto" | |
mirror: false | |
} | |
} | |
layers { | |
name: "conv1" | |
type: CONVOLUTION | |
bottom: "data" | |
top: "conv1" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 96 | |
kernel_size: 11 | |
stride: 4 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layers { | |
name: "relu1" | |
type: RELU | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layers { | |
name: "pool1" | |
type: POOLING | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "norm1" | |
type: LRN | |
bottom: "pool1" | |
top: "norm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layers { | |
name: "conv2" | |
type: CONVOLUTION | |
bottom: "norm1" | |
top: "conv2" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu2" | |
type: RELU | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layers { | |
name: "pool2" | |
type: POOLING | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "norm2" | |
type: LRN | |
bottom: "pool2" | |
top: "norm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layers { | |
name: "conv3" | |
type: CONVOLUTION | |
bottom: "norm2" | |
top: "conv3" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layers { | |
name: "relu3" | |
type: RELU | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layers { | |
name: "conv4" | |
type: CONVOLUTION | |
bottom: "conv3" | |
top: "conv4" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu4" | |
type: RELU | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layers { | |
name: "conv5" | |
type: CONVOLUTION | |
bottom: "conv4" | |
top: "conv5" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu5" | |
type: RELU | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layers { | |
name: "pool5" | |
type: POOLING | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "Rconv6" | |
type: CONVOLUTION | |
bottom: "pool5" | |
top: "Rconv6" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
name: "Rrelu6" | |
type: RELU | |
bottom: "Rconv6" | |
top: "Rconv6" | |
} | |
layers { | |
name: "Rconv7" | |
type: CONVOLUTION | |
bottom: "Rconv6" | |
top: "Rconv7" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
} | |
} | |
layers { | |
name: "Rrelu7" | |
type: RELU | |
bottom: "Rconv7" | |
top: "Rconv7" | |
} | |
layers { | |
name: "Rconv8" | |
type: CONVOLUTION | |
bottom: "Rconv7" | |
top: "Rconv8" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
} | |
} | |
layers { | |
name: "Rrelu8" | |
type: RELU | |
bottom: "Rconv8" | |
top: "Rconv8" | |
} | |
layers { | |
name: "deconv4" | |
type: DECONVOLUTION | |
bottom: "Rconv8" | |
top: "deconv4" | |
deconvolution_param { | |
output_channels: 256 | |
output_height: 12 | |
output_width: 12 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv4" | |
type: RELU | |
bottom: "deconv4" | |
top: "deconv4" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv3" | |
type: DECONVOLUTION | |
bottom: "deconv4" | |
top: "deconv3" | |
deconvolution_param { | |
output_channels: 128 | |
output_height: 24 | |
output_width: 24 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv3" | |
type: RELU | |
bottom: "deconv3" | |
top: "deconv3" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv2" | |
type: DECONVOLUTION | |
bottom: "deconv3" | |
top: "deconv2" | |
deconvolution_param { | |
output_channels: 64 | |
output_height: 48 | |
output_width: 48 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv2" | |
type: RELU | |
bottom: "deconv2" | |
top: "deconv2" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv1" | |
type: DECONVOLUTION | |
bottom: "deconv2" | |
top: "deconv1" | |
deconvolution_param { | |
output_channels: 32 | |
output_height: 96 | |
output_width: 96 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv1" | |
type: RELU | |
bottom: "deconv1" | |
top: "deconv1" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv0" | |
type: DECONVOLUTION | |
bottom: "deconv1" | |
top: "deconv0" | |
deconvolution_param { | |
output_channels: 3 | |
output_height: 192 | |
output_width: 192 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CaffeNet" | |
layers { | |
name: "data" | |
type: DATA | |
top: "data" | |
data_param { | |
source: "/misc/lmbraid10/dosovits/Datasets/ILSVRC2012/all/val_leveldb" | |
backend: LEVELDB | |
batch_size: 16 | |
crop_size: 227 | |
mean_file: "/misc/lmbraid10/dosovits/Datasets/ILSVRC2012/all/imagenet_mean.binaryproto" | |
mirror: false | |
} | |
} | |
layers { | |
name: "conv1" | |
type: CONVOLUTION | |
bottom: "data" | |
top: "conv1" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 96 | |
kernel_size: 11 | |
stride: 4 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layers { | |
name: "relu1" | |
type: RELU | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layers { | |
name: "pool1" | |
type: POOLING | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "norm1" | |
type: LRN | |
bottom: "pool1" | |
top: "norm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layers { | |
name: "conv2" | |
type: CONVOLUTION | |
bottom: "norm1" | |
top: "conv2" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu2" | |
type: RELU | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layers { | |
name: "pool2" | |
type: POOLING | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "norm2" | |
type: LRN | |
bottom: "pool2" | |
top: "norm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layers { | |
name: "conv3" | |
type: CONVOLUTION | |
bottom: "norm2" | |
top: "conv3" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layers { | |
name: "relu3" | |
type: RELU | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layers { | |
name: "conv4" | |
type: CONVOLUTION | |
bottom: "conv3" | |
top: "conv4" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu4" | |
type: RELU | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layers { | |
name: "conv5" | |
type: CONVOLUTION | |
bottom: "conv4" | |
top: "conv5" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
group: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu5" | |
type: RELU | |
bottom: "conv5" | |
top: "conv5" | |
} | |
layers { | |
name: "pool5" | |
type: POOLING | |
bottom: "conv5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "fc6" | |
type: INNER_PRODUCT | |
bottom: "pool5" | |
top: "fc6" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.005 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu6" | |
type: RELU | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layers { | |
name: "fc7" | |
type: INNER_PRODUCT | |
bottom: "fc6" | |
top: "fc7" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.005 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "relu7" | |
type: RELU | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layers { | |
name: "fc8" | |
type: INNER_PRODUCT | |
bottom: "fc7" | |
top: "fc8" | |
blobs_lr: 0 | |
blobs_lr: 0 | |
weight_decay: 1 | |
weight_decay: 0 | |
inner_product_param { | |
num_output: 1000 | |
weight_filler { | |
type: "gaussian" | |
std: 0.005 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layers { | |
name: "defc7" | |
type: INNER_PRODUCT | |
bottom: "fc8" | |
top: "defc7" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layers { | |
name: "relu_defc7" | |
type: RELU | |
bottom: "defc7" | |
top: "defc7" | |
} | |
layers { | |
name: "defc6" | |
type: INNER_PRODUCT | |
bottom: "defc7" | |
top: "defc6" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layers { | |
name: "relu_defc6" | |
type: RELU | |
bottom: "defc6" | |
top: "defc6" | |
} | |
layers { | |
name: "defc5" | |
type: INNER_PRODUCT | |
bottom: "defc6" | |
top: "defc5" | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layers { | |
name: "relu_defc5" | |
type: RELU | |
bottom: "defc5" | |
top: "defc5" | |
} | |
layers { | |
name: "reshape" | |
type: RESHAPE | |
bottom: "defc5" | |
top: "reshape_defc5" | |
reshape_param { | |
channels: 256 | |
height: 4 | |
width: 4 | |
} | |
} | |
layers { | |
name: "deconv4" | |
type: DECONVOLUTION | |
bottom: "reshape_defc5" | |
top: "deconv4" | |
deconvolution_param { | |
output_channels: 256 | |
output_height: 8 | |
output_width: 8 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv4" | |
type: RELU | |
bottom: "deconv4" | |
top: "deconv4" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv3" | |
type: DECONVOLUTION | |
bottom: "deconv4" | |
top: "deconv3" | |
deconvolution_param { | |
output_channels: 128 | |
output_height: 16 | |
output_width: 16 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv3" | |
type: RELU | |
bottom: "deconv3" | |
top: "deconv3" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv2" | |
type: DECONVOLUTION | |
bottom: "deconv3" | |
top: "deconv2" | |
deconvolution_param { | |
output_channels: 64 | |
output_height: 32 | |
output_width: 32 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv2" | |
type: RELU | |
bottom: "deconv2" | |
top: "deconv2" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv1" | |
type: DECONVOLUTION | |
bottom: "deconv2" | |
top: "deconv1" | |
deconvolution_param { | |
output_channels: 32 | |
output_height: 64 | |
output_width: 64 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
layers { | |
name: "relu_deconv1" | |
type: RELU | |
bottom: "deconv1" | |
top: "deconv1" | |
relu_param { | |
negative_slope: 0.3 | |
} | |
} | |
layers { | |
name: "deconv0" | |
type: DECONVOLUTION | |
bottom: "deconv1" | |
top: "deconv0" | |
deconvolution_param { | |
output_channels: 3 | |
output_height: 128 | |
output_width: 128 | |
pad: 2 | |
kernel_size: 5 | |
stride: 2 | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment