Created
September 28, 2016 11:45
-
-
Save kklot/00c8e63ebaba64253ddd4057a0a4f551 to your computer and use it in GitHub Desktop.
Robust correction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' robustODE function | |
#' | |
#' @export | |
robustODE <- function(LS, init = initPars, crit.Tukey = 0.01, crit.huber = 0.05, optim.ctrl, resODE, maxit = 10) { | |
environment(LS) <- environment() | |
if (missing(resODE)) stop("Provide function to calculate residual") | |
## ========================================================================= | |
## IRLS and robust | |
## ========================================================================= | |
# 1. Obtain starting values. | |
## ------------------------------------------------------------------------- | |
# Use OLS to compute residuals and | |
message("Step 1. Estimating initial scale and weights") | |
weighted <- FALSE | |
fit <- optim(init, LS, optim.ctrl) | |
e <- resODE(fit) | |
s <- mad(e) # MAD scale median(abs(resid))/0.6745 | |
# 2. Huber estimation: | |
## ------------------------------------------------------------------------- | |
# Use Huber function with C = 1.345. | |
es <- abs(e) / s | |
old.Huber <- w <- first.w <- getWeight(es, "Huber") | |
# iteration until the maximum change in weights value is less than 0.05. | |
hubercv <- FALSE | |
weighted <- TRUE | |
CheckConv <- function(old, current, crit) { | |
change <- abs(current - old) # absolute changes | |
return(max(change) < crit) | |
} | |
message("Step 2. Starting Huber estimation...") | |
iter <- 0 | |
while(!hubercv) { | |
iter <- iter + 1 | |
message("H-iter: ", iter) | |
current.fit <- optim(init, LS, optim.ctrl) | |
current.e <- resODE(current.fit) | |
current.s <- mad(current.e) # MAD scale median(abs(resid))/0.6745 | |
current.es <- abs(current.e) / current.s | |
current.Huber <- getWeight(current.es, "Huber") | |
convergedH <- CheckConv(old.Huber, current.Huber, crit.huber) | |
if (convergedH) { | |
hubercv <- TRUE | |
message("Huber weights converged!") | |
} else if (iter == maxit) { | |
hubercv <- TRUE | |
message("Huber weights are not converged after ", maxit, " iterations!") | |
message("Continuing Tukey step") | |
} else { | |
old.Huber <- w <- current.Huber | |
} | |
} | |
# 3. Tukey estimation: | |
## ------------------------------------------------------------------------- | |
# Calculate case weight by using the biweight function with c = 4.685. | |
tukeycv <- FALSE | |
iter <- 0 | |
old.Tukey <- w <- getWeight(current.es, "biweight") | |
message("Step 3. Starting Tukey estimation...") | |
while(!tukeycv) { | |
iter <- iter + 1 | |
message("T-iter: ", iter) | |
current.fit <- optim(init, LS, optim.ctrl) | |
current.e <- resODE(current.fit) | |
current.s <- mad(current.e) # MAD scale median(abs(resid))/0.6745 | |
current.es <- abs(current.e) / current.s | |
current.Tukey <- getWeight(current.es, "biweight") | |
convergedT <- CheckConv(old.Tukey, current.Tukey, crit.Tukey) | |
if (convergedT) { | |
tukeycv <- TRUE | |
message("Tukey weights converged!") | |
} else if (iter == maxit) { | |
tukeycv <- TRUE | |
message("Tukey weights are not converged after ", maxit, " iterations!") | |
} else { | |
old.Tukey <- w <- current.Tukey | |
} | |
} | |
message("Done") | |
# return(list(L2 = fit$par, robust = current.fit$par) ) | |
return(list(L2 = fit$par, robust = current.fit$par, | |
first.w = first.w, first.r = e, | |
final.w = current.Tukey, final.r = current.e)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment