-
-
Save kkweon/98568a72fadf53d153996327753af51b to your computer and use it in GitHub Desktop.
Logging to tensorboard with manually generated summaries (not relying on summary ops)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Simple example on how to log scalars and images to tensorboard without tensor ops.""" | |
__author__ = "Michael Gygli" | |
import tensorflow as tf | |
from StringIO import StringIO | |
import matplotlib.pyplot as plt | |
import numpy as np | |
class Logger(object): | |
"""Logging in tensorboard without tensorflow ops.""" | |
def __init__(self, log_dir): | |
"""Creates a summary writer logging to log_dir.""" | |
self.writer = tf.summary.FileWriter(log_dir) | |
def log_scalar(self, tag, value, step): | |
"""Log a scalar variable. | |
Parameter | |
---------- | |
tag : basestring | |
Name of the scalar | |
value | |
step : int | |
training iteration | |
""" | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, | |
simple_value=value)]) | |
self.writer.add_summary(summary, step) | |
def log_images(self, tag, images, step): | |
"""Logs a list of images.""" | |
im_summaries = [] | |
for nr, img in enumerate(images): | |
# Write the image to a string | |
s = StringIO() | |
plt.imsave(s, img, format='png') | |
# Create an Image object | |
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), | |
height=img.shape[0], | |
width=img.shape[1]) | |
# Create a Summary value | |
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr), | |
image=img_sum)) | |
# Create and write Summary | |
summary = tf.Summary(value=im_summaries) | |
self.writer.add_summary(summary, step) | |
def log_histogram(self, tag, values, step, bins=1000): | |
"""Logs the histogram of a list/vector of values.""" | |
# Create histogram using numpy | |
counts, bin_edges = np.histogram(values, bins=bins) | |
# Fill fields of histogram proto | |
hist = tf.HistogramProto() | |
hist.min = float(np.min(values)) | |
hist.max = float(np.max(values)) | |
hist.num = int(np.prod(values.shape)) | |
hist.sum = float(np.sum(values)) | |
hist.sum_squares = float(np.sum(values**2)) | |
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1] | |
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30 | |
# Thus, we drop the start of the first bin | |
bin_edges = bin_edges[1:] | |
# Add bin edges and counts | |
for edge in bin_edges: | |
hist.bucket_limit.append(edge) | |
for c in counts: | |
hist.bucket.append(c) | |
# Create and write Summary | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment