Created
April 10, 2018 09:53
-
-
Save klotzambein/b5ce123d97612fdedb2bfdfd64fc5e9e to your computer and use it in GitHub Desktop.
PhysikLernen
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!doctype html><html><head><meta charset='utf-8'> | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-markdown-css/2.4.1/github-markdown.min.css"> | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.11.0/styles/default.min.css"> | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.8.3/katex.min.css"> | |
<link rel="stylesheet" href="https://gitcdn.xyz/repo/goessner/mdmath/master/css/texmath.css"> | |
<link rel="stylesheet" href="https://gitcdn.xyz/repo/goessner/mdmath/master/css/vscode-texmath.css"> | |
</head><body class="markdown-body"> | |
<h1 data-line="0" class="code-line" id="gravitation">Gravitation</h1> | |
<h2 data-line="2" class="code-line" id="keplersche-gesetze">Kepler'sche Gesetze</h2> | |
<ol> | |
<li data-line="3" class="code-line"> | |
<p data-line="3" class="code-line">Alle Planeten bewegen sich auf Ellipsenbahnen um die Sonne. In einem der Beiden Brennpunkten steht die Sonne.</p> | |
</li> | |
<li data-line="5" class="code-line"> | |
<p data-line="5" class="code-line">Die gerade Verbindung zwischen Sonne und Planeten überstreicht in gleicher Zeit gleiche Flächen.<br> | |
<eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>A</mi></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac></mrow><mo>=</mo><mi>k</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">{\Delta A \over \Delta t} = konst.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.872331em;"></span><span class="strut bottom" style="height:1.217331em;vertical-align:-0.345em;"></span><span class="base"><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.872331em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">Δ</span><span class="mord mathit mtight">t</span></span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">Δ</span><span class="mord mathit mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit" style="margin-right:0.03148em;">k</span><span class="mord mathit">o</span><span class="mord mathit">n</span><span class="mord mathit">s</span><span class="mord mathit">t</span><span class="mord">.</span></span></span></span></eq> Wobei <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">\Delta A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord">Δ</span><span class="mord mathit">A</span></span></span></span></eq> die überstrichene Fläche ist.</p> | |
</li> | |
<li data-line="8" class="code-line"> | |
<p data-line="8" class="code-line">In einem Planetensystem ist <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>a</mi><mn>3</mn></msup><mi mathvariant="normal">/</mi><msup><mi>T</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^3 / T^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq> konstant dabei ist <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit">a</span></span></span></span></eq> die große Halbachse und <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span></eq> die Umlaufzeit.</p> | |
</li> | |
</ol> | |
<h2 data-line="10" class="code-line" id="aphel-perihel-und-die-elipse">Aphel, Perihel und die Elipse</h2> | |
<ul> | |
<li data-line="11" class="code-line">Perihel: Sonne am nächsten</li> | |
<li data-line="12" class="code-line">Perigäum: Erde am nächsten</li> | |
<li data-line="13" class="code-line">Aphel: Sonne am fernsten</li> | |
<li data-line="14" class="code-line">Apogäum: Erde am fernsten</li> | |
<li data-line="15" class="code-line">Ellipse | |
<ul> | |
<li data-line="16" class="code-line">Grße Halbachse: <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit">a</span></span></span></span></eq> (längster Radius)</li> | |
<li data-line="17" class="code-line">Lineare Exzentrizität: <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit">e</span></span></span></span></eq> (Mitte zu Brennpunkt)</li> | |
<li data-line="18" class="code-line">Numerische Exzentrizität: <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>ϵ</mi><mo>=</mo><mi>e</mi><mi mathvariant="normal">/</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">\epsilon = e/a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit">ϵ</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">e</span><span class="mord">/</span><span class="mord mathit">a</span></span></span></span></eq></li> | |
</ul> | |
</li> | |
</ul> | |
<h2 data-line="19" class="code-line" id="geostation%C3%A4rit%C3%A4t">Geostationärität</h2> | |
<ul> | |
<li data-line="20" class="code-line">Immer über einem Punkt am Equator</li> | |
<li data-line="21" class="code-line">Geschwindigkeit entspricht Erdrotation</li> | |
<li data-line="22" class="code-line">Winkelgeschwindigkeit <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>ω</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mi>T</mi></mrow><annotation encoding="application/x-tex">\omega = 2 \pi / T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">ω</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">2</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span></eq></li> | |
<li data-line="23" class="code-line">Zentripetalkraft <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>r</mi></msub><mo>=</mo><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>r</mi><mo>=</mo><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">F_r = m \omega^2 r = m v^2 / r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord mathit" style="margin-right:0.02778em;">r</span></span></span></span></eq></li> | |
<li data-line="24" class="code-line">Geostationär: | |
<ul> | |
<li data-line="25" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>ω</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mi>T</mi></mrow><annotation encoding="application/x-tex">\omega = 2 \pi / T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">ω</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">2</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord">/</span><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span></eq></li> | |
<li data-line="26" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>r</mi></msub><mo>=</mo><mi>r</mi><mi>m</mi><mn>4</mn><msup><mi>π</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>T</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">F_r = r m 4 \pi^2 /T^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="mord mathit">m</span><span class="mord">4</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq></li> | |
<li data-line="27" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>r</mi></msub><mo>=</mo><msub><mi>F</mi><mi>G</mi></msub><mo>=</mo><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">F_r = F_G = G m m_z / r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">G</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq></li> | |
<li data-line="28" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mi>r</mi><mi>m</mi><mn>4</mn><msup><mi>π</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>T</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">G m m_z / r^2 = r m 4 \pi^2 /T^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="mord mathit">m</span><span class="mord">4</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq></li> | |
<li data-line="29" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>G</mi><msub><mi>m</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><msup><mi>r</mi><mi>r</mi></msup><mo>=</mo><mn>4</mn><msup><mi>π</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><msup><mi>T</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">G m_z / r^r = 4 \pi^2 /T^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit">G</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span></span></span></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq></li> | |
<li data-line="30" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>r</mi><mo>=</mo><mroot><mrow><mi>G</mi><msub><mi>m</mi><mi>z</mi></msub><mo>(</mo><mn>1</mn><mi>a</mi><msup><mo>)</mo><mn>2</mn></msup><mi mathvariant="normal">/</mi><mn>4</mn><msup><mi>π</mi><mn>2</mn></msup></mrow><mrow><mn>3</mn></mrow></mroot></mrow><annotation encoding="application/x-tex">r = \sqrt[3] {G m_z (1a)^2 / 4\pi^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.935em;"></span><span class="strut bottom" style="height:1.24em;vertical-align:-0.30499999999999994em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7002200000000001em;"><span style="top:-2.878em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size6 size1 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.935em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathit">G</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mord mathit">a</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord">4</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-2.8950000000000005em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg width='400em' height='1.28em' viewBox='0 0 400000 1296' preserveAspectRatio='xMinYMin slice'><path d='M263,681c0.7,0,18,39.7,52,119c34,79.3,68.167, | |
158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120c340,-704.7,510.7,-1060.3,512,-1067 | |
c4.7,-7.3,11,-11,19,-11H40000v40H1012.3s-271.3,567,-271.3,567c-38.7,80.7,-84, | |
175,-136,283c-52,108,-89.167,185.3,-111.5,232c-22.3,46.7,-33.8,70.3,-34.5,71 | |
c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1s-109,-253,-109,-253c-72.7,-168,-109.3, | |
-252,-110,-252c-10.7,8,-22,16.7,-34,26c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26 | |
s76,-59,76,-59s76,-60,76,-60z M1001 80H40000v40H1012z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.30499999999999994em;"></span></span></span></span></span></span></span></eq></li> | |
</ul> | |
</li> | |
</ul> | |
<h2 data-line="31" class="code-line" id="massenbestimmung">Massenbestimmung</h2> | |
<ul> | |
<li data-line="32" class="code-line">Orbit | |
<ul> | |
<li data-line="33" class="code-line">Satelit (Mond) <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>z</mi></msub><mo>=</mo><msub><mi>F</mi><mi>G</mi></msub></mrow><annotation encoding="application/x-tex">F_z=F_G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">G</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span></eq></li> | |
</ul> | |
</li> | |
<li data-line="34" class="code-line">Fallexperiment und Ortskonstante | |
<ul> | |
<li data-line="35" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>g</mi></msub><mo>=</mo><msub><mi>F</mi><mi>G</mi></msub></mrow><annotation encoding="application/x-tex">F_g = F_G</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">G</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span></eq>; <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi><mi>g</mi><mo>=</mo><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">m g = G m m_z / r^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8141079999999999em;"></span><span class="strut bottom" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit">m</span><span class="mord mathit" style="margin-right:0.03588em;">g</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></eq></li> | |
</ul> | |
</li> | |
</ul> | |
<h2 data-line="36" class="code-line" id="kosmischegeschwindigkeiten">Kosmischegeschwindigkeiten</h2> | |
<ol> | |
<li data-line="37" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">v</span></span></span></span></eq> bei festem Radius:</li> | |
</ol> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>=</mo><msqrt><mrow><mfrac><mrow><mi>G</mi><msub><mi>m</mi><mi>z</mi></msub></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></msqrt></mrow><annotation encoding="application/x-tex">v_1=\sqrt{Gm_z \over r}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.67104em;"></span><span class="strut bottom" style="height:2.44em;vertical-align:-0.7689599999999999em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.67104em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">G</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.6310400000000005em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg width='400em' height='2.48em' viewBox='0 0 400000 2592' preserveAspectRatio='xMinYMin slice'><path d='M424,2478c-1.3,-0.7,-38.5,-172,-111.5,-514c-73, | |
-342,-109.8,-513.3,-110.5,-514c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5, | |
25c-5.7,9.3,-9.8,16,-12.5,20s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13, | |
-13s76,-122,76,-122s77,-121,77,-121s209,968,209,968c0,-2,84.7,-361.7,254,-1079 | |
c169.3,-717.3,254.7,-1077.7,256,-1081c4,-6.7,10,-10,18,-10H400000v40H1014.6 | |
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185c-2,6,-10,9,-24,9 | |
c-8,0,-12,-0.7,-12,-2z M1001 80H400000v40H1014z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7689599999999999em;"></span></span></span></span></span></span></span></span></eqn></section><ol start="2"> | |
<li data-line="41" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">v</span></span></span></span></eq> benötigt zur Flucht aus System</li> | |
</ol> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>v</mi><mn>2</mn></msub><mo>=</mo><msqrt><mrow><mn>2</mn><mrow><mfrac><mrow><mi>G</mi><msub><mi>m</mi><mi>z</mi></msub></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mrow></msqrt></mrow><annotation encoding="application/x-tex">v_2=\sqrt{2 {Gm_z \over r}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.67104em;"></span><span class="strut bottom" style="height:2.44em;vertical-align:-0.7689599999999999em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.67104em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord">2</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">G</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span style="top:-3.6310400000000005em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg width='400em' height='2.48em' viewBox='0 0 400000 2592' preserveAspectRatio='xMinYMin slice'><path d='M424,2478c-1.3,-0.7,-38.5,-172,-111.5,-514c-73, | |
-342,-109.8,-513.3,-110.5,-514c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5, | |
25c-5.7,9.3,-9.8,16,-12.5,20s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13, | |
-13s76,-122,76,-122s77,-121,77,-121s209,968,209,968c0,-2,84.7,-361.7,254,-1079 | |
c169.3,-717.3,254.7,-1077.7,256,-1081c4,-6.7,10,-10,18,-10H400000v40H1014.6 | |
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185c-2,6,-10,9,-24,9 | |
c-8,0,-12,-0.7,-12,-2z M1001 80H400000v40H1014z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7689599999999999em;"></span></span></span></span></span></span></span></span></eqn></section><ol start="3"> | |
<li data-line="45" class="code-line"><eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">v</span></span></span></span></eq> benötigt zur flucht aus Erde und Sonnensystem<br> | |
Fluchtgeschw. aus Sonnensystem minus Erderevolutionsgeschw. plus Erdfluchtgeschw.</li> | |
</ol> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>v</mi><mn>3</mn></msub><mo>=</mo><msqrt><mrow><mo>(</mo><msub><mi>v</mi><mrow><mn>2</mn><mo separator="true">,</mo><mi>S</mi></mrow></msub><mo>−</mo><msub><mi>v</mi><mi>E</mi></msub><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><msubsup><mi>v</mi><mrow><mn>2</mn><mo separator="true">,</mo><mi>S</mi></mrow><mn>2</mn></msubsup></mrow></msqrt></mrow><annotation encoding="application/x-tex">v_3=\sqrt{(v_{2,S}-v_E)^2+v_{2,S}^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.2170095000000003em;"></span><span class="strut bottom" style="height:1.84em;vertical-align:-0.6229904999999998em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2170095000000003em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.328331em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mpunct mtight">,</span><span class="mord mathit mtight" style="margin-right:0.05764em;">S</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05764em;">E</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.795908em;"><span style="top:-2.4064690000000004em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mpunct mtight">,</span><span class="mord mathit mtight" style="margin-right:0.05764em;">S</span></span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4296389999999999em;"></span></span></span></span></span></span></span><span style="top:-3.1770095em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.8800000000000001em;"><svg width='400em' height='1.8800000000000001em' viewBox='0 0 400000 1944' preserveAspectRatio='xMinYMin slice'><path d='M1001,80H400000v40H1013.1s-83.4,268,-264.1,840c-180.7, | |
572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7, | |
-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744c-10,12,-21,25,-33,39s-32,39,-32,39 | |
c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30c26.7,-32.7,52,-63,76,-91s52,-60,52,-60 | |
s208,722,208,722c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5, | |
-658.5c53.7,-170.3,84.5,-266.8,92.5,-289.5c4,-6.7,10,-10,18,-10z | |
M1001 80H400000v40H1013z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.6229904999999998em;"></span></span></span></span></span></span></span></span></eqn></section><h2 data-line="49" class="code-line" id="gesamt-energie-formel">Gesamt Energie Formel</h2> | |
<ul> | |
<li data-line="50" class="code-line">Energie auf einer Ellipsenbahn:</li> | |
</ul> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>e</mi><mi>s</mi></mrow></msub><mo>=</mo><mo>−</mo><mrow><mfrac><mrow><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mrow></mrow><annotation encoding="application/x-tex">E_{ges}=-{G m m_z \over 2a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.36033em;"></span><span class="strut bottom" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span><span class="mord mathit mtight">e</span><span class="mord mathit mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathit">a</span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></eqn></section><ul> | |
<li data-line="53" class="code-line">Energie auf einer Kreisbahn</li> | |
</ul> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>p</mi><mi>o</mi><mi>t</mi></mrow></msub><mo>+</mo><msub><mi>E</mi><mrow><mi>k</mi><mi>i</mi><mi>n</mi></mrow></msub><mo>=</mo><mo>−</mo><mrow><mfrac><mrow><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub></mrow><mrow><mi>r</mi></mrow></mfrac></mrow><mo>+</mo><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">E_{pot} + E_{kin} = -{G m m_z \over r} + {1 \over 2} m v^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.36033em;"></span><span class="strut bottom" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.28055599999999997em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">p</span><span class="mord mathit mtight">o</span><span class="mord mathit mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03148em;">k</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mord rule" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></eqn></section><h2 data-line="56" class="code-line" id="hohman-%C3%BCbergang">Hohman übergang</h2> | |
<ul> | |
<li data-line="57" class="code-line">Erst Beschleunigung <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span></eq> später noch eine Beschleunigung</li> | |
<li data-line="58" class="code-line">Manöver Zeit durch drittes kepler Gesetz</li> | |
<li data-line="59" class="code-line">Energie durch elipsen Bahnenergie</li> | |
</ul> | |
<h2 data-line="60" class="code-line" id="bahnen-beschreiben">Bahnen beschreiben</h2> | |
<ul> | |
<li data-line="61" class="code-line">durch Energie und Geschwindigkiet | |
<ul> | |
<li data-line="62" class="code-line">Wenn <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>e</mi><mi>s</mi></mrow></msub><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">E_{ges} > 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span><span class="mord mathit mtight">e</span><span class="mord mathit mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">0</span></span></span></span></eq> dann Flucht auf Hyperbelbahn</li> | |
<li data-line="63" class="code-line">Wenn <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>e</mi><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">E_{ges} = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span><span class="mord mathit mtight">e</span><span class="mord mathit mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">0</span></span></span></span></eq> dann Flucht auf Parabelbahn</li> | |
<li data-line="64" class="code-line">Wenn <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>e</mi><mi>s</mi></mrow></msub><mo><</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">E_{ges} < 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span><span class="mord mathit mtight">e</span><span class="mord mathit mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">0</span></span></span></span></eq> dann bleibt Objekt auf Ellipsenbahn</li> | |
<li data-line="65" class="code-line">Wenn <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>e</mi><mi>s</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>G</mi><mi>m</mi><msub><mi>m</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><mn>2</mn><mi>r</mi></mrow><annotation encoding="application/x-tex">E_{ges} = -G m m_z / 2r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1.036108em;vertical-align:-0.286108em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span><span class="mord mathit mtight">e</span><span class="mord mathit mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord">−</span><span class="mord mathit">G</span><span class="mord mathit">m</span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord">/</span><span class="mord">2</span><span class="mord mathit" style="margin-right:0.02778em;">r</span></span></span></span></eq> dann Kreisbahn</li> | |
</ul> | |
</li> | |
</ul> | |
<h2 data-line="66" class="code-line" id="gravitationsgesetz">Gravitationsgesetz</h2> | |
<section><eqn><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>F</mi><mi>g</mi></msub><mo>=</mo><mi>G</mi><mrow><mfrac><mrow><msub><mi>m</mi><mn>1</mn></msub><msub><mi>m</mi><mn>2</mn></msub></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mrow></mrow><annotation encoding="application/x-tex">F_g = G {m_1 m_2 \over r^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.1075599999999999em;"></span><span class="strut bottom" style="height:1.7935599999999998em;vertical-align:-0.686em;"></span><span class="base"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mord rule" style="margin-right:0.2777777777777778em;"></span><span class="mord mathit">G</span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.15em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.2em;"><svg width='400em' height='0.2em' viewBox='0 0 400000 200' preserveAspectRatio='xMinYMin slice'><path d='M0 80H400000 v40H0z M0 80H400000 v40H0z'/></svg></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mord"><span class="mord mathit">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></eqn></section><h2 data-line="68" class="code-line" id="himmelsk%C3%B6rper-klasifizieren">Himmelskörper klasifizieren</h2> | |
<ul> | |
<li data-line="69" class="code-line">Monde (kreisen um Planeten)</li> | |
<li data-line="70" class="code-line">Sterne (in Galaxien)</li> | |
<li data-line="71" class="code-line">Planeten (Kreisen um Sterne mit einer bestimmten Masse)</li> | |
<li data-line="72" class="code-line">Galaxie (Ansammlung von Sternen)</li> | |
</ul> | |
</body></html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment