Last active
December 20, 2016 10:20
-
-
Save klprint/cabfbb6b97547c85c9dfbb0f8975ac90 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Analyse data using a sliding window | |
slideFunct <- function(data, window, step){ | |
total <- length(data) | |
spots <- seq(from=1, to=(total-window), by=step) | |
result <- vector(length = length(spots)) | |
for(i in 1:length(spots)){ | |
result[i] <- median(data[spots[i]:(spots[i]+window)]) | |
} | |
return(result) | |
} | |
quickmerge <- function(x, y){ | |
df <- merge(x, y, by= "row.names", all.x= F, all.y= F) | |
rownames(df) <- df$Row.names | |
df$Row.names <- NULL | |
return(df) | |
} | |
quickmerge.multi <- function(..., all=F){ | |
dfs <- list(...) | |
if(all == T){ | |
merged.df <- dfs[[1]] | |
for(i in 2:length(dfs)){ | |
merged.df <- quickmerge(merged.df, dfs[[i]], all.x=T, all.y=T) | |
} | |
}else{ | |
merged.df <- Reduce(quickmerge, dfs) | |
} | |
return(merged.df) | |
} | |
scalelog2<-function(x=2,g){ #for below diagonal | |
for (i in 2:x){ | |
for (j in 1:(i-1)) { | |
g[i,(j)]<-g[i,(j)] + scale_x_continuous(trans='log2') + | |
scale_y_continuous(trans='log2') | |
} } | |
for (i in 1:(x-1)){ #for the bottom row | |
g[x,i]<-g[x,i] + scale_y_continuous(trans='log2') | |
} | |
for (i in 1:x){ #for the diagonal | |
g[i,i]<-g[i,i]+ scale_x_continuous(trans='log2') } | |
return(g) } | |
default.read <- function(table.path, | |
sep='\t', | |
r.names = 1, | |
header = T){ | |
df <- read.table(table.path, | |
sep=sep, | |
row.names = r.names, | |
header = header) | |
return(df) | |
} | |
colsums.as.df <- function(df){ | |
df.cs <- as.data.frame(colSums(df)) | |
colnames(df.cs) <- 'Colsum' | |
return(df.cs) | |
} | |
plot.colsums <- function(df, main = 'Number of reads per sample'){ | |
df.cs <- colsums.as.df(df) | |
require(ggplot2) | |
p.plot <- ggplot(df.cs, aes(x=row.names(df.cs), y=Colsum)) + | |
geom_bar(stat = 'identity') + | |
ylab('Reads number') + | |
xlab('Sample') + | |
ggtitle(main) | |
return(p.plot) | |
} | |
# Order the df using the row.names in alphabetic decreaseing order | |
order.rownames <- function(df){ | |
df.out <- df[order(row.names(df)), ] | |
return(df.out) | |
} | |
# Summarize reads of different DFs with same Colname | |
sum.reads <- function(df.x, df.y){ | |
samples <- c(colnames(df.x), colnames(df.y)) | |
samples <- samples[!duplicated(samples)] | |
df.x <- order.rownames(df.x) | |
df.y <- order.rownames(df.y) | |
r.names <- row.names(df.x) | |
df.out <- NULL | |
for(sample in samples){ | |
if(sample %in% colnames(df.x) & sample %in% colnames(df.y)){ | |
df.out[[sample]] <- df.x[[sample]] + df.y[[sample]] | |
} | |
if(sample %in% colnames(df.x) & !(sample %in% colnames(df.y))){ | |
df.out[[sample]] <- df.x[[sample]] | |
} | |
if(sample %in% colnames(df.y) & !(sample %in% colnames(df.x))){ | |
df.out[[sample]] <- df.y[[sample]] | |
} | |
} | |
df.out <- as.data.frame(df.out) | |
row.names(df.out) <- r.names | |
return(df.out) | |
} | |
replace.na <- function(vec, m=NULL) { | |
if(is.null(m)){ | |
m <- mean(vec, na.rm = TRUE) | |
} | |
vec[is.na(vec)] <- m | |
return(vec) | |
} | |
assign.class <- function(df, ulist){ | |
classes <- NULL | |
for (gene in row.names(df)){ | |
if (gene %in% row.names(ulist)){ | |
classes <- c(classes, ulist$Class[row.names(ulist) == gene ]) | |
} else { | |
gene <- strsplit(gene, split = '\\.')[[1]] | |
# print(gene) | |
gene <- paste(gene[-(length(gene))], collapse = '') | |
if (gene %in% row.names(ulist)){ | |
classes <- c(classes, ulist$Class[row.names(ulist) == gene ]) | |
} else { | |
classes <- c(classes, 'ZUnknown') | |
} | |
} | |
} | |
return(classes) | |
} | |
progress <- function (x, max = 100) { | |
percent <- x / max * 100 | |
cat(sprintf('\r[%-50s] %d%%', | |
paste(rep('=', percent / 2), collapse = ''), | |
floor(percent))) | |
if (x == max) | |
cat('\n') | |
} | |
count.subset <- function(seq, aa.subset, norm = F, normTo = width(seq)){ | |
in.subset <- 0 | |
for(aa in strsplit(seq, split = '')[[1]]){ | |
if(aa %in% strsplit(aa.subset, split = '')[[1]]){ # test if AA is in subset | |
in.subset <- in.subset + 1 | |
} | |
} | |
if (norm){ | |
return(in.subset / normTo) | |
} else { | |
return(in.subset) | |
} | |
} | |
quarter.fun <- function(seq, name, sumarize = NULL, FUN, ...){ | |
qs <- c('Q1', 'Q2', 'Q3', 'Q4') | |
seq <- strsplit(seq, split = '')[[1]] | |
seq.app <- c(seq, rep(NA, 4 - (length(seq) %% 4) )) | |
mat <- matrix(seq.app, nrow = 4) | |
q1 <- 1 | |
q2 <- ncol(mat) | |
q3 <- 2* ncol(mat) | |
q4 <- 3* ncol(mat) | |
q5 <- length(seq) | |
seq.quarters <- list( Q1 = paste(seq[q1:q2], collapse = ''), | |
Q2 = paste(seq[ (q2+1) :q3], collapse =''), | |
Q3 = paste(seq[ (q3+1) :q4], collapse = ''), | |
Q4 = paste(seq[ (q4+1) :q5], collapse ='' )) | |
out <- NULL | |
for(q.seq in seq.quarters){ | |
out <- c(out, FUN(q.seq, ...)) | |
} | |
out <- data.frame(matrix(out, nrow = 1)) | |
colnames(out) <- paste(name, qs, sep='') | |
if(!is.null(sumarize)){ | |
out <- sum( out[sumarize] ) | |
} | |
return(out) | |
} | |
find.patches <- function(seq, aa.subset, min.len = 2, | |
return.num = T, return.val = '', | |
normTo = NULL) { | |
aa.regex <- paste('[', aa.subset, ']', sep = '') | |
str.regex <- paste(aa.regex,'{', min.len, ',', width(seq) ,'}', sep = '') | |
# print(str.regex) | |
t <- gregexpr(str.regex, seq, perl = T)[[1]] | |
i <- 1 | |
found.patches <- NULL | |
for(reg.pos in t){ | |
found.patches <- c(found.patches, substr(seq, reg.pos, reg.pos + (attr(t, 'match.length')[i] - 1 ) ) ) | |
i <- i+1 | |
} | |
names(found.patches) <- NULL | |
if (return.num) { | |
if (!is.null(normTo)) { | |
return(length(found.patches) / normTo) | |
} else { | |
return(length(found.patches)) | |
} | |
if (return.val == 'max'){ | |
return(max( width(d) )) | |
} else if (return.val == 'mean') { | |
return(mean( width(d) )) | |
} else if (return.val == 'median') { | |
return(median( width(d) )) | |
} | |
# Return max patch | |
}else{ | |
return(found.patches) | |
} | |
} | |
select.features <- function(df.for.WRT) { | |
start.time <- Sys.time() | |
print(start.time) | |
comp.mat <- list() | |
k <- 2 | |
for (i in 1:ncol(df.for.WRT)){ | |
temp.pval <- NULL | |
for(j in k:ncol(df.for.WRT)){ | |
wr.test <- wilcox.test(df.for.WRT[,i], df.for.WRT[,j], paired = T, exact = F) | |
temp.pval <- c(temp.pval, wr.test$p.value) | |
} | |
temp.pval <- c(rep(NaN, k-1), temp.pval) | |
comp.mat[[colnames(df.for.WRT)[i]]] <- temp.pval | |
if(k < ncol(df.for.WRT)){ | |
k <- k+1 | |
}else{ | |
k <- ncol(df.for.WRT) | |
} | |
progress(x = i, max = ncol(df.for.WRT)) | |
} | |
finish.time <- Sys.time() | |
print(finish.time) | |
print(paste('Elapsed time: ', start.time - finish.time, sep = '')) | |
return(comp.mat) | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment