Created
September 6, 2018 21:14
-
-
Save kmaher9/805c5ef3e89b1c2a28f02f1dbb06af1e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var brain = require('brain.js') | |
var fs = require('fs') | |
// configuration to be used in the brain | |
const config = { | |
binaryThresh: 0.5, // arbitary value | |
hiddenLayers: [3], // the size of the hidden layers in the network | |
activation: 'sigmoid' // activation function | |
} | |
// array to hold the training data after formatting | |
var trainingData = [] | |
// initialise a new backpropogating neural network | |
const net = new brain.NeuralNetwork(config) | |
// load each line of the training data into a new index of an array | |
var trainingFile = fs.readFileSync("data.csv").toString().split("\n") | |
// iterate over each line of the training data, adding it to a new array for training later | |
for (var i = 0; i < trainingFile.length; i++) { | |
var entry = trainingFile[i] | |
var values = entry.split(",") | |
var points = [parseInt(values[0]), parseInt(values[1]), parseInt(values[2]), parseInt(values[3])] | |
if (i <= 49) { | |
trainingData.push({input: points, output: {setosa: 1}}) | |
} | |
else if (i > 49 && i <= 99) { | |
trainingData.push({input: points, output: {versicolor: 1}}) | |
} | |
else if (i > 99 && i <= 149) { | |
trainingData.push({input: points, output: {virginica: 1}}) | |
} | |
} | |
// console log the output of each iteration | |
net.train(trainingData, { | |
log: true | |
}) | |
// test data - actually virginica | |
var output = net.run([6,3,5,2]) | |
console.log(output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment