Skip to content

Instantly share code, notes, and snippets.

@kmaher9
Created September 4, 2018 18:59
Show Gist options
  • Save kmaher9/d57660dfa78167b8acc63eb90e0d7974 to your computer and use it in GitHub Desktop.
Save kmaher9/d57660dfa78167b8acc63eb90e0d7974 to your computer and use it in GitHub Desktop.
var fs = require('fs')
var brain = require('brain.js')
var bPath = "Z:\\Development\\Javascript\\NodeJS\\Neural Networks\\Brain.JS\\002\\src\\dataset\\business"
var tPath = "Z:\\Development\\Javascript\\NodeJS\\Neural Networks\\Brain.JS\\002\\src\\dataset\\tech"
var sample = "Z:\\Development\\Javascript\\NodeJS\\Neural Networks\\Brain.JS\\002\\src\\dataset\\011.txt"
var net = new brain.recurrent.LSTM()
var bFiles = fs.readdirSync(bPath)
var outputs = []
for (var i = 0; i < 4; i++) {
var file = bFiles[i]
var content = fs.readFileSync(bPath + "\\" + file)
outputs.push({input: content, output: 'business' })
}
var tFiles = fs.readdirSync(tPath)
for (var i = 0; i < 4; i++) {
var file = tFiles[i]
var content = fs.readFileSync(tPath + "\\" + file)
outputs.push({input: content, output: 'technology' })
}
console.log("training on " + outputs.length + " inputs ...")
net.train(outputs, {
log: true
})
var testFile = fs.readFileSync(sample)
var output = net.run(testFile);
console.log(output)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment