Created
September 1, 2016 02:47
-
-
Save kmill/3b0ed6a5ed538ad44f204797eeb90317 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Example of Todd-Coxeter to compute S_3 from relations | |
idents = [] | |
neighbors = [] | |
to_visit = [] | |
visited = set() | |
op_dir = [1, 0, 3, 2] | |
def find(c): | |
c2 = idents[c] | |
if c == c2: | |
return c | |
else: | |
c2 = find(c2) | |
idents[c] = c2 | |
return c2 | |
def new(): | |
c = len(idents) | |
idents.append(c) | |
neighbors.append([None, None, None, None]) | |
to_visit.append(c) | |
return c | |
def union(c1, c2): | |
if c1 == None or c2 == None: return | |
c1 = find(c1) | |
c2 = find(c2) | |
if c1 == c2: | |
return | |
if c1 in visited: | |
visited.add(c2) | |
idents[c1] = c2 | |
for d, (n1, n2) in enumerate(zip(neighbors[c1], neighbors[c2])): | |
if n1 != None: | |
if n2 == None: | |
neighbors[c2][d] = n1 | |
else: | |
union(n1, n2) | |
def follow(c, d, create=True): | |
c = find(c) | |
ns = neighbors[c] | |
if ns[d] == None: | |
if not create: | |
return None | |
ns[d] = new() | |
neighbors[ns[d]][op_dir[d]] = c | |
return find(ns[d]) | |
def followp(c, ds): | |
c = find(c) | |
for d in reversed(ds): | |
c = follow(c, d) | |
return c | |
start = new() | |
to_visit.append(start) | |
while to_visit : | |
c = find(to_visit.pop(0)) | |
if c in visited: continue | |
visited.add(c) | |
for d in range(0, 4): | |
follow(c, d) | |
# a^2=1 | |
union(followp(c, [0, 0]), c) | |
# b^3=1 | |
union(followp(c, [2, 2, 2]), c) | |
# baba=1 | |
union(followp(c, [2, 0, 2, 0]), c) | |
print "done" | |
cosets = list(set(find(c_) for c_ in visited)) | |
a_perm = [cosets.index(follow(c, 0)) for i, c in enumerate(cosets)] | |
b_perm = [cosets.index(follow(c, 2)) for i, c in enumerate(cosets)] | |
print "a =", a_perm | |
print "b =", b_perm |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment