Created
April 26, 2020 19:17
-
-
Save kmturley/170f92d9027a82ca478aed65bfd88631 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import sys | |
import time | |
import numpy as np | |
import tensorflow as tf | |
def load_graph(model_file): | |
graph = tf.Graph() | |
graph_def = tf.GraphDef() | |
with open(model_file, "rb") as f: | |
graph_def.ParseFromString(f.read()) | |
with graph.as_default(): | |
tf.import_graph_def(graph_def) | |
return graph | |
def read_tensor_from_image_file(file_name, input_height=299, input_width=299, | |
input_mean=0, input_std=255): | |
input_name = "file_reader" | |
output_name = "normalized" | |
file_reader = tf.read_file(file_name, input_name) | |
if file_name.endswith(".png"): | |
image_reader = tf.image.decode_png(file_reader, channels = 3, | |
name='png_reader') | |
elif file_name.endswith(".gif"): | |
image_reader = tf.squeeze(tf.image.decode_gif(file_reader, | |
name='gif_reader')) | |
elif file_name.endswith(".bmp"): | |
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader') | |
else: | |
image_reader = tf.image.decode_jpeg(file_reader, channels = 3, | |
name='jpeg_reader') | |
float_caster = tf.cast(image_reader, tf.float32) | |
dims_expander = tf.expand_dims(float_caster, 0); | |
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) | |
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) | |
sess = tf.Session() | |
result = sess.run(normalized) | |
return result | |
def load_labels(label_file): | |
label = [] | |
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() | |
for l in proto_as_ascii_lines: | |
label.append(l.rstrip()) | |
return label | |
if __name__ == "__main__": | |
file_name = "tf_files/flower_photos/daisy/3475870145_685a19116d.jpg" | |
model_file = "tf_files/retrained_graph.pb" | |
label_file = "tf_files/retrained_labels.txt" | |
input_height = 224 | |
input_width = 224 | |
input_mean = 128 | |
input_std = 128 | |
input_layer = "input" | |
output_layer = "final_result" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--image", help="image to be processed") | |
parser.add_argument("--graph", help="graph/model to be executed") | |
parser.add_argument("--labels", help="name of file containing labels") | |
parser.add_argument("--input_height", type=int, help="input height") | |
parser.add_argument("--input_width", type=int, help="input width") | |
parser.add_argument("--input_mean", type=int, help="input mean") | |
parser.add_argument("--input_std", type=int, help="input std") | |
parser.add_argument("--input_layer", help="name of input layer") | |
parser.add_argument("--output_layer", help="name of output layer") | |
args = parser.parse_args() | |
if args.graph: | |
model_file = args.graph | |
if args.image: | |
file_name = args.image | |
if args.labels: | |
label_file = args.labels | |
if args.input_height: | |
input_height = args.input_height | |
if args.input_width: | |
input_width = args.input_width | |
if args.input_mean: | |
input_mean = args.input_mean | |
if args.input_std: | |
input_std = args.input_std | |
if args.input_layer: | |
input_layer = args.input_layer | |
if args.output_layer: | |
output_layer = args.output_layer | |
graph = load_graph(model_file) | |
t = read_tensor_from_image_file(file_name, | |
input_height=input_height, | |
input_width=input_width, | |
input_mean=input_mean, | |
input_std=input_std) | |
input_name = "import/" + input_layer | |
output_name = "import/" + output_layer | |
input_operation = graph.get_operation_by_name(input_name); | |
output_operation = graph.get_operation_by_name(output_name); | |
with tf.Session(graph=graph) as sess: | |
start = time.time() | |
results = sess.run(output_operation.outputs[0], | |
{input_operation.outputs[0]: t}) | |
end=time.time() | |
results = np.squeeze(results) | |
top_k = results.argsort()[-5:][::-1] | |
labels = load_labels(label_file) | |
print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start)) | |
template = "{} (score={:0.5f})" | |
for i in top_k: | |
print(template.format(labels[i], results[i])) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment