Skip to content

Instantly share code, notes, and snippets.

@kn9ts
Created January 27, 2019 13:52
Show Gist options
  • Save kn9ts/1daedcea8f101ec6fd5c9854ba6369d9 to your computer and use it in GitHub Desktop.
Save kn9ts/1daedcea8f101ec6fd5c9854ba6369d9 to your computer and use it in GitHub Desktop.
pragma solidity ^0.4.11;
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
function Ownable() {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) onlyOwner public {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
// SafeMath.sub will throw if there is not enough balance.
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
*
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
/**
* approve should be called when allowed[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
*/
function increaseApproval (address _spender, uint _addedValue) public returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue) public returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
/**
* @title Pausable
* @dev Base contract which allows children to implement an emergency stop mechanism.
*/
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused);
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(paused);
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
/**
* @title Enigma Token
* @dev ERC20 Enigma Token (ENG)
*
* ENG Tokens are divisible by 1e8 (100,000,000) base
* units referred to as 'Grains'.
*
* ENG are displayed using 8 decimal places of precision.
*
* 1 ENG is equivalent to:
* 100000000 == 1 * 10**8 == 1e8 == One Hundred Million Grains
*
* 150 million ENG (total supply) is equivalent to:
* 15000000000000000 == 150000000 * 10**8 == 1e17
*
* All initial ENG Grains are assigned to the creator of
* this contract.
*
*/
contract EnigmaToken is StandardToken, Pausable {
string public constant name = 'Enigma'; // Set the token name for display
string public constant symbol = 'ENG'; // Set the token symbol for display
uint8 public constant decimals = 8; // Set the number of decimals for display
uint256 public constant INITIAL_SUPPLY = 150000000 * 10**uint256(decimals); // 150 million ENG specified in Grains
/**
* @dev SesnseToken Constructor
* Runs only on initial contract creation.
*/
function EnigmaToken() {
totalSupply = INITIAL_SUPPLY; // Set the total supply
balances[msg.sender] = INITIAL_SUPPLY; // Creator address is assigned all
Transfer(0x0, msg.sender, INITIAL_SUPPLY);
}
/**
* @dev Transfer token for a specified address when not paused
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) whenNotPaused returns (bool) {
require(_to != address(0));
return super.transfer(_to, _value);
}
/**
* @dev Transfer tokens from one address to another when not paused
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint256 _value) whenNotPaused returns (bool) {
require(_to != address(0));
return super.transferFrom(_from, _to, _value);
}
/**
* @dev Aprove the passed address to spend the specified amount of tokens on behalf of msg.sender when not paused.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint256 _value) whenNotPaused returns (bool) {
return super.approve(_spender, _value);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment