Created
January 17, 2014 21:51
-
-
Save knaaptime/8482398 to your computer and use it in GitHub Desktop.
UrbanSim run using foti branch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Zero:example knaaptime$ ./run.sh | |
Fri Jan 17 16:48:14 2014 | |
Running buildings.json | |
Fetching buildings | |
Fetching parcels | |
Fetching modify_table | |
Fetching jobs | |
Fetching modify_table | |
Fetching modify_table | |
Specifying model in 1.004534 | |
Finished executing in 1.004562 seconds | |
Specifying model in 0.959697 | |
Finished executing in 0.962592 seconds | |
SIMULATED buildings.json model in 0.963 seconds | |
Running hhlds.json | |
Fetching households | |
Fetching modify_table | |
Specifying model in 0.788763 | |
Finished executing in 0.790800 seconds | |
Specifying model in 0.761408 | |
Finished executing in 0.763465 seconds | |
SIMULATED hhlds.json model in 0.764 seconds | |
Running jobs.json | |
Specifying model in 0.334225 | |
Finished executing in 0.335192 seconds | |
Specifying model in 0.378522 | |
Finished executing in 0.379146 seconds | |
SIMULATED jobs.json model in 0.379 seconds | |
Running zones.json | |
Fetching zones | |
Fetching modify_table | |
Fetching travel_data | |
Fetching modify_table | |
Specifying model in 0.886182 | |
Finished executing in 0.886209 seconds | |
Specifying model in 0.832673 | |
Finished executing in 0.832709 seconds | |
SIMULATED zones.json model in 0.833 seconds | |
Running rsh.json | |
Done merging land use and choosers in 0.083303 | |
Finished specifying in 0.185821 seconds | |
Specifying model in 0.203870 | |
Estimating hedonic for 1 with 297376 observations | |
historic new year_built ln_parcel_acres \ | |
count 297376.000000 297376.000000 297376.000000 2.973760e+05 | |
mean 0.070934 0.365013 1980.371378 4.129644e-01 | |
std 0.256715 0.481435 19.725919 7.159198e-01 | |
min 0.000000 0.000000 1790.000000 2.149406e-14 | |
25% 0.000000 0.000000 1967.000000 1.334722e-01 | |
50% 0.000000 0.000000 1984.000000 1.765473e-01 | |
75% 0.000000 1.000000 1996.000000 3.790199e-01 | |
max 1.000000 1.000000 2012.000000 1.126495e+01 | |
ln_sqft_per_unit ln_average_income ln_population_in_range \ | |
count 297376.000000 297376.000000 297376.000000 | |
mean 7.366880 10.959103 11.884783 | |
std 0.409320 1.167037 1.437795 | |
min 4.615120 0.000000 0.000000 | |
25% 7.029973 10.866889 11.707925 | |
50% 7.346655 11.080326 12.381000 | |
75% 7.630947 11.304999 12.800691 | |
max 12.288689 11.819008 13.235408 | |
ln_time_to_downtown const | |
count 297376.000000 297376 | |
mean 3.340930 1 | |
std 0.463769 0 | |
min 2.051068 1 | |
25% 3.031756 1 | |
50% 3.228030 1 | |
75% 3.745288 1 | |
max 4.637399 1 | |
[8 rows x 9 columns] | |
OLS Regression Results | |
================================================================================== | |
Dep. Variable: unit_price_residential R-squared: 0.491 | |
Model: OLS Adj. R-squared: 0.491 | |
Method: Least Squares F-statistic: 3.579e+04 | |
Date: Fri, 17 Jan 2014 Prob (F-statistic): 0.00 | |
Time: 16:48:22 Log-Likelihood: -1.6818e+05 | |
No. Observations: 297376 AIC: 3.364e+05 | |
Df Residuals: 297367 BIC: 3.365e+05 | |
Df Model: 8 | |
========================================================================================== | |
coef std err t P>|t| [95.0% Conf. Int.] | |
------------------------------------------------------------------------------------------ | |
historic 0.0024 0.004 0.578 0.563 -0.006 0.011 | |
new -0.0614 0.003 -22.693 0.000 -0.067 -0.056 | |
year_built 0.0043 8.66e-05 49.795 0.000 0.004 0.004 | |
ln_parcel_acres 0.0381 0.001 30.304 0.000 0.036 0.041 | |
ln_sqft_per_unit 0.9179 0.002 447.874 0.000 0.914 0.922 | |
ln_average_income 0.0821 0.001 120.506 0.000 0.081 0.083 | |
ln_population_in_range -0.0114 0.001 -11.432 0.000 -0.013 -0.009 | |
ln_time_to_downtown -0.1591 0.003 -47.906 0.000 -0.166 -0.153 | |
const -3.3623 0.165 -20.318 0.000 -3.687 -3.038 | |
============================================================================== | |
Omnibus: 140602.129 Durbin-Watson: 0.751 | |
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2822495.447 | |
Skew: 1.804 Prob(JB): 0.00 | |
Kurtosis: 17.655 Cond. No. 4.20e+05 | |
============================================================================== | |
Warnings: | |
[1] The condition number is large, 4.2e+05. This might indicate that there are | |
strong multicollinearity or other numerical problems. | |
Specifying model in 0.002667 | |
Estimating hedonic for 2 with 4711 observations | |
historic new ln_average_income const | |
count 4711.000000 4711.000000 4711.000000 4711 | |
mean 0.167268 0.060921 10.171841 1 | |
std 0.373255 0.239211 2.354934 0 | |
min 0.000000 0.000000 0.000000 1 | |
25% 0.000000 0.000000 10.445782 1 | |
50% 0.000000 0.000000 10.637335 1 | |
75% 0.000000 0.000000 10.947579 1 | |
max 1.000000 1.000000 11.685293 1 | |
[8 rows x 4 columns] | |
OLS Regression Results | |
================================================================================== | |
Dep. Variable: unit_price_residential R-squared: 0.038 | |
Model: OLS Adj. R-squared: 0.037 | |
Method: Least Squares F-statistic: 61.61 | |
Date: Fri, 17 Jan 2014 Prob (F-statistic): 4.59e-39 | |
Time: 16:48:22 Log-Likelihood: -5937.2 | |
No. Observations: 4711 AIC: 1.188e+04 | |
Df Residuals: 4707 BIC: 1.191e+04 | |
Df Model: 3 | |
===================================================================================== | |
coef std err t P>|t| [95.0% Conf. Int.] | |
------------------------------------------------------------------------------------- | |
historic 0.1676 0.034 4.987 0.000 0.102 0.233 | |
new 0.0101 0.052 0.193 0.847 -0.093 0.113 | |
ln_average_income 0.0652 0.005 12.314 0.000 0.055 0.076 | |
const 10.3836 0.055 188.025 0.000 10.275 10.492 | |
============================================================================== | |
Omnibus: 905.683 Durbin-Watson: 1.580 | |
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5470.965 | |
Skew: -0.779 Prob(JB): 0.00 | |
Kurtosis: 8.044 Cond. No. 47.0 | |
============================================================================== | |
Finished executing in 0.874971 seconds | |
Done merging land use and choosers in 0.097057 | |
Finished specifying in 0.123426 seconds | |
Specifying model in 0.144677 | |
Generating rents on 304040 buildings | |
Specifying model in 0.003176 | |
Generating rents on 5453 buildings | |
Finished executing in 0.270766 seconds | |
SIMULATED rsh.json model in 0.407 seconds | |
Running zones2.json | |
Specifying model in 0.018208 | |
Finished executing in 0.018249 seconds | |
Specifying model in 0.008324 | |
Finished executing in 0.008362 seconds | |
SIMULATED zones2.json model in 0.008 seconds | |
Running new_hhlds.json | |
SIMULATED new_hhlds.json model in 0.029 seconds | |
Running hlcm.json | |
Done merging land use and choosers in 0.083397 | |
Estimating parameters for segment = (1, 0.0), size = 1154 | |
Specifying model in 0.070168 | |
average_price ln_average_income ln_population_in_range \ | |
count 115400.000000 115400.000000 115400.000000 | |
mean 12.179990 10.933910 11.867161 | |
std 0.433353 1.223486 1.479274 | |
min 0.000000 0.000000 0.000000 | |
25% 11.990229 10.843286 11.638156 | |
50% 12.190934 11.072011 12.381000 | |
75% 12.386533 11.294388 12.812449 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 115400.000000 115400.000000 | |
mean 3.337257 18.994125 | |
std 0.476494 5.324946 | |
min 0.000000 0.000000 | |
25% 3.015932 20.042354 | |
50% 3.227324 20.591179 | |
75% 3.750210 20.974545 | |
max 4.562793 21.904810 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -5314.366395 | |
Log-liklihood at convergence: -4958.450623 | |
Log-liklihood ratio: 0.066972 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -1.060 | 0.100 | -10.840 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | -0.050 | 0.120 | -0.460 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | -0.020 | 0.030 | -0.540 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | 0.070 | 0.100 | 0.690 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | 0.140 | 0.010 | 22.620 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (1, 1.0), size = 1603 | |
Specifying model in 0.086343 | |
average_price ln_average_income ln_population_in_range \ | |
count 160300.000000 160300.000000 160300.000000 | |
mean 12.180372 10.936894 11.861200 | |
std 0.448161 1.218706 1.488862 | |
min 0.000000 0.000000 0.000000 | |
25% 11.991727 10.847899 11.638156 | |
50% 12.191078 11.072707 12.381000 | |
75% 12.392412 11.296932 12.812449 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 160300.000000 160300.000000 | |
mean 3.338447 21.292772 | |
std 0.476729 2.321288 | |
min 0.000000 0.000000 | |
25% 3.020937 21.276612 | |
50% 3.227871 21.550636 | |
75% 3.750210 21.804018 | |
max 4.562793 22.597957 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -7382.087808 | |
Log-liklihood at convergence: -6876.669273 | |
Log-liklihood ratio: 0.068466 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -0.750 | 0.100 | -7.120 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | -0.510 | 0.160 | -3.180 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | -0.030 | 0.030 | -1.040 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.250 | 0.100 | -2.590 | ** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | 0.370 | 0.090 | 4.010 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (1, 2.0), size = 1922 | |
Specifying model in 0.118133 | |
average_price ln_average_income ln_population_in_range \ | |
count 192200.000000 192200.000000 192200.000000 | |
mean 12.183984 10.941919 11.869146 | |
std 0.449140 1.206091 1.483376 | |
min 0.000000 0.000000 0.000000 | |
25% 11.997782 10.849898 11.672592 | |
50% 12.191532 11.077796 12.385051 | |
75% 12.396771 11.299900 12.808786 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 192200.000000 192200.000000 | |
mean 3.337886 21.881075 | |
std 0.473631 2.354471 | |
min 0.000000 0.000000 | |
25% 3.029969 21.874495 | |
50% 3.227324 22.142581 | |
75% 3.750210 22.382541 | |
max 4.637399 23.142420 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -8851.137097 | |
Log-liklihood at convergence: -8302.212522 | |
Log-liklihood ratio: 0.062017 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -0.690 | 0.090 | -8.110 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | 1.280 | 0.160 | 7.950 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | -0.030 | 0.030 | -0.880 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.160 | 0.090 | -1.790 | * | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | -0.560 | 0.090 | -6.280 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (1, 3.0), size = 2232 | |
Specifying model in 0.124567 | |
average_price ln_average_income ln_population_in_range \ | |
count 223200.000000 223200.000000 223200.000000 | |
mean 12.180828 10.937054 11.863034 | |
std 0.464468 1.232848 1.494587 | |
min 0.000000 0.000000 0.000000 | |
25% 11.997782 10.859368 11.662500 | |
50% 12.191108 11.077796 12.385051 | |
75% 12.396519 11.299900 12.808786 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 223200.000000 223200.000000 | |
mean 3.338770 22.602179 | |
std 0.475647 2.511111 | |
min 0.000000 0.000000 | |
25% 3.027899 22.521670 | |
50% 3.227871 22.826957 | |
75% 3.750210 23.155910 | |
max 4.562793 25.290298 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -10278.739855 | |
Log-liklihood at convergence: -9343.506140 | |
Log-liklihood ratio: 0.090987 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -0.600 | 0.090 | -6.780 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | 3 | 0.120 | 24.040 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | -0.070 | 0.030 | -2.740 | ** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.330 | 0.090 | -3.870 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | -1.370 | 0.050 | -27.040 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (2, 0.0), size = 1364 | |
Specifying model in 0.079543 | |
average_price ln_average_income ln_population_in_range \ | |
count 136400.000000 136400.000000 136400.000000 | |
mean 12.183381 10.940120 11.876167 | |
std 0.436232 1.201284 1.477286 | |
min 0.000000 0.000000 0.000000 | |
25% 11.997782 10.843286 11.691214 | |
50% 12.191078 11.072707 12.392602 | |
75% 12.396519 11.294388 12.812449 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 136400.000000 136400.000000 | |
mean 3.333650 18.600222 | |
std 0.474327 5.758796 | |
min 0.000000 0.000000 | |
25% 3.016206 19.807667 | |
50% 3.227324 20.453672 | |
75% 3.745288 20.886516 | |
max 4.476772 21.894430 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -6281.452134 | |
Log-liklihood at convergence: -5552.542282 | |
Log-liklihood ratio: 0.116042 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -1.930 | 0.070 | -28.210 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | -0.050 | 0.060 | -0.760 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | 0.200 | 0.040 | 5.200 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.930 | 0.090 | -10.580 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | 0.140 | 0.010 | 27.070 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (2, 1.0), size = 885 | |
Specifying model in 0.050293 | |
average_price ln_average_income ln_population_in_range \ | |
count 88500.000000 88500.000000 88500.000000 | |
mean 12.180102 10.935971 11.872944 | |
std 0.461557 1.216387 1.488052 | |
min 0.000000 0.000000 0.000000 | |
25% 11.991727 10.843286 11.672592 | |
50% 12.191078 11.072011 12.394157 | |
75% 12.386533 11.296932 12.813586 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 88500.000000 88500.000000 | |
mean 3.333473 21.247073 | |
std 0.478473 2.312345 | |
min 0.000000 0.000000 | |
25% 3.011896 21.222132 | |
50% 3.227233 21.502109 | |
75% 3.750210 21.756595 | |
max 4.562793 22.587577 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -4075.575615 | |
Log-liklihood at convergence: -3581.895134 | |
Log-liklihood ratio: 0.121131 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -1.170 | 0.090 | -13.110 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | -2.330 | 0.200 | -11.460 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | 0.400 | 0.060 | 6.470 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.170 | 0.150 | -1.180 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | 1.300 | 0.120 | 11.020 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (2, 2.0), size = 572 | |
Specifying model in 0.039890 | |
average_price ln_average_income ln_population_in_range \ | |
count 57200.000000 57200.000000 57200.000000 | |
mean 12.176781 10.930878 11.863699 | |
std 0.490314 1.242152 1.498532 | |
min 0.000000 0.000000 0.000000 | |
25% 11.991727 10.843286 11.672592 | |
50% 12.191078 11.072707 12.385051 | |
75% 12.387834 11.294388 12.812392 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 57200.000000 57200.000000 | |
mean 3.336446 21.832742 | |
std 0.477683 2.425241 | |
min 0.000000 0.000000 | |
25% 3.027899 21.847138 | |
50% 3.227324 22.106957 | |
75% 3.747391 22.347178 | |
max 4.637399 23.105387 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -2634.157346 | |
Log-liklihood at convergence: -2360.475993 | |
Log-liklihood ratio: 0.103897 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -0.970 | 0.160 | -5.950 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | -0.460 | 0.280 | -1.620 | . | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | 0.250 | 0.070 | 3.490 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.260 | 0.180 | -1.470 | . | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | 0.320 | 0.160 | 1.960 | * | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Estimating parameters for segment = (2, 3.0), size = 268 | |
Specifying model in 0.020312 | |
average_price ln_average_income ln_population_in_range \ | |
count 26800.000000 26800.000000 26800.000000 | |
mean 12.176987 10.933148 11.873304 | |
std 0.499580 1.229631 1.486060 | |
min 0.000000 0.000000 0.000000 | |
25% 11.991727 10.843286 11.691214 | |
50% 12.191078 11.074403 12.392602 | |
75% 12.395797 11.291993 12.812449 | |
max 14.974602 11.819008 13.235408 | |
ln_time_to_downtown income X average_income | |
count 26800.000000 26800.000000 | |
mean 3.333686 22.485526 | |
std 0.479936 2.482985 | |
min 0.000000 0.000000 | |
25% 3.011768 22.441104 | |
50% 3.225800 22.726573 | |
75% 3.745288 23.013566 | |
max 4.476772 24.446476 | |
[8 rows x 5 columns] | |
Null Log-liklihood: -1234.185610 | |
Log-liklihood at convergence: -1108.039338 | |
Log-liklihood ratio: 0.102210 | |
+-------------------------+-------------+--------+---------+--------------+ | |
| Variables | Coefficient | Stderr | T-score | Significance | | |
+=========================+=============+========+=========+==============+ | |
| average price | -0.560 | 0.210 | -2.610 | ** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln average income | 0.970 | 0.330 | 2.900 | ** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln population in range | 0 | 0.090 | 0.050 | | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| ln time to downtown | -0.820 | 0.220 | -3.690 | *** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
| income X average income | -0.400 | 0.160 | -2.470 | ** | | |
+-------------------------+-------------+--------+---------+--------------+ | |
Finished executing in 6.068114 seconds | |
Fetching annual_household_relocation_rates | |
Fetching modify_table | |
Traceback (most recent call last): | |
File "run_json.py", line 12, in <module> | |
for arg in args: misc.run_model(arg,dset,estimate=1,simulate=1) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/urbansim-0.1.0-py2.7.egg/synthicity/utils/misc.py", line 21, in run_model | |
model.simulate(dset,config,year,show=show,variables=variables) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/urbansim-0.1.0-py2.7.egg/synthicity/urbansim/locationchoicemodel.py", line 82, in simulate | |
movers = dset.relocation_rates(choosers,rate_table,rate_field) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/urbansim-0.1.0-py2.7.egg/synthicity/urbansim/dataset.py", line 146, in relocation_rates | |
agents.relocation_rate.values[np.prod(a,axis=0).astype('bool')] = row[rate_fname] | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numpy/core/fromnumeric.py", line 2112, in prod | |
out=out, keepdims=keepdims) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numpy/core/_methods.py", line 22, in _prod | |
out=out, keepdims=keepdims) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/pandas/core/ops.py", line 496, in wrapper | |
arr = na_op(lvalues, rvalues) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/pandas/core/ops.py", line 443, in na_op | |
raise_on_error=True, **eval_kwargs) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/pandas/computation/expressions.py", line 175, in evaluate | |
**eval_kwargs) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/pandas/computation/expressions.py", line 103, in _evaluate_numexpr | |
**eval_kwargs) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numexpr/necompiler.py", line 739, in evaluate | |
NumExpr(ex, signature, **context) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numexpr/necompiler.py", line 555, in NumExpr | |
precompile(ex, signature, context) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numexpr/necompiler.py", line 498, in precompile | |
ast = typeCompileAst(ast) | |
File "/Users/knaaptime/anaconda/lib/python2.7/site-packages/numexpr/necompiler.py", line 163, in typeCompileAst | |
% (ast.value + '_' + retsig+basesig)) | |
NotImplementedError: couldn't find matching opcode for 'mul_bbb' | |
Closing remaining open files: /Users/knaaptime/urbansim-foti/data/mrcog.h5... done |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment