Skip to content

Instantly share code, notes, and snippets.

@knbknb
Last active August 10, 2023 19:01
Show Gist options
  • Save knbknb/33ee027ec40ddc011f43dadfceb18c2f to your computer and use it in GitHub Desktop.
Save knbknb/33ee027ec40ddc011f43dadfceb18c2f to your computer and use it in GitHub Desktop.
gcloud snippets
#!/usr/bin/env bash
# Description: snippets for gcloud
# install gcloud sdk
# login
# first look
gcloud auth list
gcloud config list
gcloud config list project
# enable APIs and services:
# here for AI Platform
gcloud services enable \
compute.googleapis.com \
iam.googleapis.com \
iamcredentials.googleapis.com \
monitoring.googleapis.com \
logging.googleapis.com \
notebooks.googleapis.com \
aiplatform.googleapis.com \
bigquery.googleapis.com \
artifactregistry.googleapis.com \
cloudbuild.googleapis.com \
container.googleapis.com
# Create custom service account:
SERVICE_ACCOUNT_ID=vertex-custom-training-sa
gcloud iam service-accounts create $SERVICE_ACCOUNT_ID \
--description="A custom service account for Vertex custom training with Tensorboard" \
--display-name="Vertex AI Custom Training"
# Grant it access to Cloud Storage for
# writing and retrieving Tensorboard logs:
PROJECT_ID=$(gcloud config get-value core/project)
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member=serviceAccount:$SERVICE_ACCOUNT_ID@$PROJECT_ID.iam.gserviceaccount.com \
--role="roles/storage.admin"
# Grant it access to your BigQuery data source to read data
# into your TensorFlow model:
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member=serviceAccount:$SERVICE_ACCOUNT_ID@$PROJECT_ID.iam.gserviceaccount.com \
--role="roles/bigquery.admin"
# Grant it access to Vertex AI for running model training, deployment, and explanation jobs:
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member=serviceAccount:$SERVICE_ACCOUNT_ID@$PROJECT_ID.iam.gserviceaccount.com \
--role="roles/aiplatform.user"
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment