Last active
December 23, 2021 14:21
-
-
Save kndt84/6492cc0a082245e99a46c0ae8ff25492 to your computer and use it in GitHub Desktop.
MobileNet V2 caffe implementation for NVIDIA DIGITS
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "MOBILENET_V2" | |
layer { | |
name: "train-data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
transform_param { | |
mirror: true | |
crop_size: 224 | |
} | |
data_param { | |
batch_size: 32 | |
} | |
include { stage: "train" } | |
} | |
layer { | |
name: "val-data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
transform_param { | |
mirror: false | |
crop_size: 224 | |
} | |
data_param { | |
batch_size: 16 | |
} | |
include { stage: "val" } | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv1/bn" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv1/scale" | |
type: "Scale" | |
bottom: "conv1/bn" | |
top: "conv1/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1/bn" | |
top: "conv1/bn" | |
} | |
layer { | |
name: "conv2_1/expand" | |
type: "Convolution" | |
bottom: "conv1/bn" | |
top: "conv2_1/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_1/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv2_1/expand" | |
top: "conv2_1/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_1/expand/scale" | |
type: "Scale" | |
bottom: "conv2_1/expand/bn" | |
top: "conv2_1/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2_1/expand" | |
type: "ReLU" | |
bottom: "conv2_1/expand/bn" | |
top: "conv2_1/expand/bn" | |
} | |
layer { | |
name: "conv2_1/dwise" | |
type: "Convolution" | |
bottom: "conv2_1/expand/bn" | |
top: "conv2_1/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 32 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv2_1/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv2_1/dwise" | |
top: "conv2_1/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_1/dwise/scale" | |
type: "Scale" | |
bottom: "conv2_1/dwise/bn" | |
top: "conv2_1/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2_1/dwise" | |
type: "ReLU" | |
bottom: "conv2_1/dwise/bn" | |
top: "conv2_1/dwise/bn" | |
} | |
layer { | |
name: "conv2_1/linear" | |
type: "Convolution" | |
bottom: "conv2_1/dwise/bn" | |
top: "conv2_1/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 16 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_1/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv2_1/linear" | |
top: "conv2_1/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_1/linear/scale" | |
type: "Scale" | |
bottom: "conv2_1/linear/bn" | |
top: "conv2_1/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv2_2/expand" | |
type: "Convolution" | |
bottom: "conv2_1/linear/bn" | |
top: "conv2_2/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 96 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_2/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv2_2/expand" | |
top: "conv2_2/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_2/expand/scale" | |
type: "Scale" | |
bottom: "conv2_2/expand/bn" | |
top: "conv2_2/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2_2/expand" | |
type: "ReLU" | |
bottom: "conv2_2/expand/bn" | |
top: "conv2_2/expand/bn" | |
} | |
layer { | |
name: "conv2_2/dwise" | |
type: "Convolution" | |
bottom: "conv2_2/expand/bn" | |
top: "conv2_2/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 96 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 96 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv2_2/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv2_2/dwise" | |
top: "conv2_2/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_2/dwise/scale" | |
type: "Scale" | |
bottom: "conv2_2/dwise/bn" | |
top: "conv2_2/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2_2/dwise" | |
type: "ReLU" | |
bottom: "conv2_2/dwise/bn" | |
top: "conv2_2/dwise/bn" | |
} | |
layer { | |
name: "conv2_2/linear" | |
type: "Convolution" | |
bottom: "conv2_2/dwise/bn" | |
top: "conv2_2/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 24 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_2/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv2_2/linear" | |
top: "conv2_2/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_2/linear/scale" | |
type: "Scale" | |
bottom: "conv2_2/linear/bn" | |
top: "conv2_2/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv3_1/expand" | |
type: "Convolution" | |
bottom: "conv2_2/linear/bn" | |
top: "conv3_1/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 144 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_1/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv3_1/expand" | |
top: "conv3_1/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_1/expand/scale" | |
type: "Scale" | |
bottom: "conv3_1/expand/bn" | |
top: "conv3_1/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3_1/expand" | |
type: "ReLU" | |
bottom: "conv3_1/expand/bn" | |
top: "conv3_1/expand/bn" | |
} | |
layer { | |
name: "conv3_1/dwise" | |
type: "Convolution" | |
bottom: "conv3_1/expand/bn" | |
top: "conv3_1/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 144 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 144 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv3_1/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv3_1/dwise" | |
top: "conv3_1/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_1/dwise/scale" | |
type: "Scale" | |
bottom: "conv3_1/dwise/bn" | |
top: "conv3_1/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3_1/dwise" | |
type: "ReLU" | |
bottom: "conv3_1/dwise/bn" | |
top: "conv3_1/dwise/bn" | |
} | |
layer { | |
name: "conv3_1/linear" | |
type: "Convolution" | |
bottom: "conv3_1/dwise/bn" | |
top: "conv3_1/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 24 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_1/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv3_1/linear" | |
top: "conv3_1/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_1/linear/scale" | |
type: "Scale" | |
bottom: "conv3_1/linear/bn" | |
top: "conv3_1/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_3_1" | |
type: "Eltwise" | |
bottom: "conv2_2/linear/bn" | |
bottom: "conv3_1/linear/bn" | |
top: "block_3_1" | |
} | |
layer { | |
name: "conv3_2/expand" | |
type: "Convolution" | |
bottom: "block_3_1" | |
top: "conv3_2/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 144 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_2/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv3_2/expand" | |
top: "conv3_2/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_2/expand/scale" | |
type: "Scale" | |
bottom: "conv3_2/expand/bn" | |
top: "conv3_2/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3_2/expand" | |
type: "ReLU" | |
bottom: "conv3_2/expand/bn" | |
top: "conv3_2/expand/bn" | |
} | |
layer { | |
name: "conv3_2/dwise" | |
type: "Convolution" | |
bottom: "conv3_2/expand/bn" | |
top: "conv3_2/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 144 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 144 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv3_2/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv3_2/dwise" | |
top: "conv3_2/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_2/dwise/scale" | |
type: "Scale" | |
bottom: "conv3_2/dwise/bn" | |
top: "conv3_2/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3_2/dwise" | |
type: "ReLU" | |
bottom: "conv3_2/dwise/bn" | |
top: "conv3_2/dwise/bn" | |
} | |
layer { | |
name: "conv3_2/linear" | |
type: "Convolution" | |
bottom: "conv3_2/dwise/bn" | |
top: "conv3_2/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_2/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv3_2/linear" | |
top: "conv3_2/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_2/linear/scale" | |
type: "Scale" | |
bottom: "conv3_2/linear/bn" | |
top: "conv3_2/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv4_1/expand" | |
type: "Convolution" | |
bottom: "conv3_2/linear/bn" | |
top: "conv4_1/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_1/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_1/expand" | |
top: "conv4_1/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_1/expand/scale" | |
type: "Scale" | |
bottom: "conv4_1/expand/bn" | |
top: "conv4_1/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_1/expand" | |
type: "ReLU" | |
bottom: "conv4_1/expand/bn" | |
top: "conv4_1/expand/bn" | |
} | |
layer { | |
name: "conv4_1/dwise" | |
type: "Convolution" | |
bottom: "conv4_1/expand/bn" | |
top: "conv4_1/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 192 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_1/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_1/dwise" | |
top: "conv4_1/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_1/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_1/dwise/bn" | |
top: "conv4_1/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_1/dwise" | |
type: "ReLU" | |
bottom: "conv4_1/dwise/bn" | |
top: "conv4_1/dwise/bn" | |
} | |
layer { | |
name: "conv4_1/linear" | |
type: "Convolution" | |
bottom: "conv4_1/dwise/bn" | |
top: "conv4_1/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_1/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_1/linear" | |
top: "conv4_1/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_1/linear/scale" | |
type: "Scale" | |
bottom: "conv4_1/linear/bn" | |
top: "conv4_1/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_4_1" | |
type: "Eltwise" | |
bottom: "conv3_2/linear/bn" | |
bottom: "conv4_1/linear/bn" | |
top: "block_4_1" | |
} | |
layer { | |
name: "conv4_2/expand" | |
type: "Convolution" | |
bottom: "block_4_1" | |
top: "conv4_2/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_2/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_2/expand" | |
top: "conv4_2/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_2/expand/scale" | |
type: "Scale" | |
bottom: "conv4_2/expand/bn" | |
top: "conv4_2/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_2/expand" | |
type: "ReLU" | |
bottom: "conv4_2/expand/bn" | |
top: "conv4_2/expand/bn" | |
} | |
layer { | |
name: "conv4_2/dwise" | |
type: "Convolution" | |
bottom: "conv4_2/expand/bn" | |
top: "conv4_2/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 192 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_2/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_2/dwise" | |
top: "conv4_2/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_2/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_2/dwise/bn" | |
top: "conv4_2/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_2/dwise" | |
type: "ReLU" | |
bottom: "conv4_2/dwise/bn" | |
top: "conv4_2/dwise/bn" | |
} | |
layer { | |
name: "conv4_2/linear" | |
type: "Convolution" | |
bottom: "conv4_2/dwise/bn" | |
top: "conv4_2/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_2/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_2/linear" | |
top: "conv4_2/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_2/linear/scale" | |
type: "Scale" | |
bottom: "conv4_2/linear/bn" | |
top: "conv4_2/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_4_2" | |
type: "Eltwise" | |
bottom: "block_4_1" | |
bottom: "conv4_2/linear/bn" | |
top: "block_4_2" | |
} | |
layer { | |
name: "conv4_3/expand" | |
type: "Convolution" | |
bottom: "block_4_2" | |
top: "conv4_3/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_3/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_3/expand" | |
top: "conv4_3/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_3/expand/scale" | |
type: "Scale" | |
bottom: "conv4_3/expand/bn" | |
top: "conv4_3/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_3/expand" | |
type: "ReLU" | |
bottom: "conv4_3/expand/bn" | |
top: "conv4_3/expand/bn" | |
} | |
layer { | |
name: "conv4_3/dwise" | |
type: "Convolution" | |
bottom: "conv4_3/expand/bn" | |
top: "conv4_3/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 192 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 192 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_3/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_3/dwise" | |
top: "conv4_3/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_3/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_3/dwise/bn" | |
top: "conv4_3/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_3/dwise" | |
type: "ReLU" | |
bottom: "conv4_3/dwise/bn" | |
top: "conv4_3/dwise/bn" | |
} | |
layer { | |
name: "conv4_3/linear" | |
type: "Convolution" | |
bottom: "conv4_3/dwise/bn" | |
top: "conv4_3/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_3/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_3/linear" | |
top: "conv4_3/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_3/linear/scale" | |
type: "Scale" | |
bottom: "conv4_3/linear/bn" | |
top: "conv4_3/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv4_4/expand" | |
type: "Convolution" | |
bottom: "conv4_3/linear/bn" | |
top: "conv4_4/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_4/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_4/expand" | |
top: "conv4_4/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_4/expand/scale" | |
type: "Scale" | |
bottom: "conv4_4/expand/bn" | |
top: "conv4_4/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_4/expand" | |
type: "ReLU" | |
bottom: "conv4_4/expand/bn" | |
top: "conv4_4/expand/bn" | |
} | |
layer { | |
name: "conv4_4/dwise" | |
type: "Convolution" | |
bottom: "conv4_4/expand/bn" | |
top: "conv4_4/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 384 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_4/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_4/dwise" | |
top: "conv4_4/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_4/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_4/dwise/bn" | |
top: "conv4_4/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_4/dwise" | |
type: "ReLU" | |
bottom: "conv4_4/dwise/bn" | |
top: "conv4_4/dwise/bn" | |
} | |
layer { | |
name: "conv4_4/linear" | |
type: "Convolution" | |
bottom: "conv4_4/dwise/bn" | |
top: "conv4_4/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_4/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_4/linear" | |
top: "conv4_4/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_4/linear/scale" | |
type: "Scale" | |
bottom: "conv4_4/linear/bn" | |
top: "conv4_4/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_4_4" | |
type: "Eltwise" | |
bottom: "conv4_3/linear/bn" | |
bottom: "conv4_4/linear/bn" | |
top: "block_4_4" | |
} | |
layer { | |
name: "conv4_5/expand" | |
type: "Convolution" | |
bottom: "block_4_4" | |
top: "conv4_5/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_5/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_5/expand" | |
top: "conv4_5/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_5/expand/scale" | |
type: "Scale" | |
bottom: "conv4_5/expand/bn" | |
top: "conv4_5/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_5/expand" | |
type: "ReLU" | |
bottom: "conv4_5/expand/bn" | |
top: "conv4_5/expand/bn" | |
} | |
layer { | |
name: "conv4_5/dwise" | |
type: "Convolution" | |
bottom: "conv4_5/expand/bn" | |
top: "conv4_5/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 384 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_5/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_5/dwise" | |
top: "conv4_5/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_5/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_5/dwise/bn" | |
top: "conv4_5/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_5/dwise" | |
type: "ReLU" | |
bottom: "conv4_5/dwise/bn" | |
top: "conv4_5/dwise/bn" | |
} | |
layer { | |
name: "conv4_5/linear" | |
type: "Convolution" | |
bottom: "conv4_5/dwise/bn" | |
top: "conv4_5/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_5/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_5/linear" | |
top: "conv4_5/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_5/linear/scale" | |
type: "Scale" | |
bottom: "conv4_5/linear/bn" | |
top: "conv4_5/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_4_5" | |
type: "Eltwise" | |
bottom: "block_4_4" | |
bottom: "conv4_5/linear/bn" | |
top: "block_4_5" | |
} | |
layer { | |
name: "conv4_6/expand" | |
type: "Convolution" | |
bottom: "block_4_5" | |
top: "conv4_6/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_6/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_6/expand" | |
top: "conv4_6/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_6/expand/scale" | |
type: "Scale" | |
bottom: "conv4_6/expand/bn" | |
top: "conv4_6/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_6/expand" | |
type: "ReLU" | |
bottom: "conv4_6/expand/bn" | |
top: "conv4_6/expand/bn" | |
} | |
layer { | |
name: "conv4_6/dwise" | |
type: "Convolution" | |
bottom: "conv4_6/expand/bn" | |
top: "conv4_6/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 384 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_6/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_6/dwise" | |
top: "conv4_6/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_6/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_6/dwise/bn" | |
top: "conv4_6/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_6/dwise" | |
type: "ReLU" | |
bottom: "conv4_6/dwise/bn" | |
top: "conv4_6/dwise/bn" | |
} | |
layer { | |
name: "conv4_6/linear" | |
type: "Convolution" | |
bottom: "conv4_6/dwise/bn" | |
top: "conv4_6/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_6/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_6/linear" | |
top: "conv4_6/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_6/linear/scale" | |
type: "Scale" | |
bottom: "conv4_6/linear/bn" | |
top: "conv4_6/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_4_6" | |
type: "Eltwise" | |
bottom: "block_4_5" | |
bottom: "conv4_6/linear/bn" | |
top: "block_4_6" | |
} | |
layer { | |
name: "conv4_7/expand" | |
type: "Convolution" | |
bottom: "block_4_6" | |
top: "conv4_7/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_7/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv4_7/expand" | |
top: "conv4_7/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_7/expand/scale" | |
type: "Scale" | |
bottom: "conv4_7/expand/bn" | |
top: "conv4_7/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_7/expand" | |
type: "ReLU" | |
bottom: "conv4_7/expand/bn" | |
top: "conv4_7/expand/bn" | |
} | |
layer { | |
name: "conv4_7/dwise" | |
type: "Convolution" | |
bottom: "conv4_7/expand/bn" | |
top: "conv4_7/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 384 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 384 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv4_7/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv4_7/dwise" | |
top: "conv4_7/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_7/dwise/scale" | |
type: "Scale" | |
bottom: "conv4_7/dwise/bn" | |
top: "conv4_7/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4_7/dwise" | |
type: "ReLU" | |
bottom: "conv4_7/dwise/bn" | |
top: "conv4_7/dwise/bn" | |
} | |
layer { | |
name: "conv4_7/linear" | |
type: "Convolution" | |
bottom: "conv4_7/dwise/bn" | |
top: "conv4_7/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 96 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_7/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv4_7/linear" | |
top: "conv4_7/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_7/linear/scale" | |
type: "Scale" | |
bottom: "conv4_7/linear/bn" | |
top: "conv4_7/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv5_1/expand" | |
type: "Convolution" | |
bottom: "conv4_7/linear/bn" | |
top: "conv5_1/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_1/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv5_1/expand" | |
top: "conv5_1/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_1/expand/scale" | |
type: "Scale" | |
bottom: "conv5_1/expand/bn" | |
top: "conv5_1/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_1/expand" | |
type: "ReLU" | |
bottom: "conv5_1/expand/bn" | |
top: "conv5_1/expand/bn" | |
} | |
layer { | |
name: "conv5_1/dwise" | |
type: "Convolution" | |
bottom: "conv5_1/expand/bn" | |
top: "conv5_1/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 576 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv5_1/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv5_1/dwise" | |
top: "conv5_1/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_1/dwise/scale" | |
type: "Scale" | |
bottom: "conv5_1/dwise/bn" | |
top: "conv5_1/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_1/dwise" | |
type: "ReLU" | |
bottom: "conv5_1/dwise/bn" | |
top: "conv5_1/dwise/bn" | |
} | |
layer { | |
name: "conv5_1/linear" | |
type: "Convolution" | |
bottom: "conv5_1/dwise/bn" | |
top: "conv5_1/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 96 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_1/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv5_1/linear" | |
top: "conv5_1/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_1/linear/scale" | |
type: "Scale" | |
bottom: "conv5_1/linear/bn" | |
top: "conv5_1/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_5_1" | |
type: "Eltwise" | |
bottom: "conv4_7/linear/bn" | |
bottom: "conv5_1/linear/bn" | |
top: "block_5_1" | |
} | |
layer { | |
name: "conv5_2/expand" | |
type: "Convolution" | |
bottom: "block_5_1" | |
top: "conv5_2/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_2/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv5_2/expand" | |
top: "conv5_2/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_2/expand/scale" | |
type: "Scale" | |
bottom: "conv5_2/expand/bn" | |
top: "conv5_2/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_2/expand" | |
type: "ReLU" | |
bottom: "conv5_2/expand/bn" | |
top: "conv5_2/expand/bn" | |
} | |
layer { | |
name: "conv5_2/dwise" | |
type: "Convolution" | |
bottom: "conv5_2/expand/bn" | |
top: "conv5_2/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 576 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv5_2/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv5_2/dwise" | |
top: "conv5_2/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_2/dwise/scale" | |
type: "Scale" | |
bottom: "conv5_2/dwise/bn" | |
top: "conv5_2/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_2/dwise" | |
type: "ReLU" | |
bottom: "conv5_2/dwise/bn" | |
top: "conv5_2/dwise/bn" | |
} | |
layer { | |
name: "conv5_2/linear" | |
type: "Convolution" | |
bottom: "conv5_2/dwise/bn" | |
top: "conv5_2/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 96 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_2/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv5_2/linear" | |
top: "conv5_2/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_2/linear/scale" | |
type: "Scale" | |
bottom: "conv5_2/linear/bn" | |
top: "conv5_2/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_5_2" | |
type: "Eltwise" | |
bottom: "block_5_1" | |
bottom: "conv5_2/linear/bn" | |
top: "block_5_2" | |
} | |
layer { | |
name: "conv5_3/expand" | |
type: "Convolution" | |
bottom: "block_5_2" | |
top: "conv5_3/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_3/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv5_3/expand" | |
top: "conv5_3/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_3/expand/scale" | |
type: "Scale" | |
bottom: "conv5_3/expand/bn" | |
top: "conv5_3/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_3/expand" | |
type: "ReLU" | |
bottom: "conv5_3/expand/bn" | |
top: "conv5_3/expand/bn" | |
} | |
layer { | |
name: "conv5_3/dwise" | |
type: "Convolution" | |
bottom: "conv5_3/expand/bn" | |
top: "conv5_3/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 576 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 576 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv5_3/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv5_3/dwise" | |
top: "conv5_3/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_3/dwise/scale" | |
type: "Scale" | |
bottom: "conv5_3/dwise/bn" | |
top: "conv5_3/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5_3/dwise" | |
type: "ReLU" | |
bottom: "conv5_3/dwise/bn" | |
top: "conv5_3/dwise/bn" | |
} | |
layer { | |
name: "conv5_3/linear" | |
type: "Convolution" | |
bottom: "conv5_3/dwise/bn" | |
top: "conv5_3/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_3/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv5_3/linear" | |
top: "conv5_3/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_3/linear/scale" | |
type: "Scale" | |
bottom: "conv5_3/linear/bn" | |
top: "conv5_3/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv6_1/expand" | |
type: "Convolution" | |
bottom: "conv5_3/linear/bn" | |
top: "conv6_1/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_1/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv6_1/expand" | |
top: "conv6_1/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_1/expand/scale" | |
type: "Scale" | |
bottom: "conv6_1/expand/bn" | |
top: "conv6_1/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_1/expand" | |
type: "ReLU" | |
bottom: "conv6_1/expand/bn" | |
top: "conv6_1/expand/bn" | |
} | |
layer { | |
name: "conv6_1/dwise" | |
type: "Convolution" | |
bottom: "conv6_1/expand/bn" | |
top: "conv6_1/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 960 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv6_1/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv6_1/dwise" | |
top: "conv6_1/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_1/dwise/scale" | |
type: "Scale" | |
bottom: "conv6_1/dwise/bn" | |
top: "conv6_1/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_1/dwise" | |
type: "ReLU" | |
bottom: "conv6_1/dwise/bn" | |
top: "conv6_1/dwise/bn" | |
} | |
layer { | |
name: "conv6_1/linear" | |
type: "Convolution" | |
bottom: "conv6_1/dwise/bn" | |
top: "conv6_1/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_1/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv6_1/linear" | |
top: "conv6_1/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_1/linear/scale" | |
type: "Scale" | |
bottom: "conv6_1/linear/bn" | |
top: "conv6_1/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_6_1" | |
type: "Eltwise" | |
bottom: "conv5_3/linear/bn" | |
bottom: "conv6_1/linear/bn" | |
top: "block_6_1" | |
} | |
layer { | |
name: "conv6_2/expand" | |
type: "Convolution" | |
bottom: "block_6_1" | |
top: "conv6_2/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_2/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv6_2/expand" | |
top: "conv6_2/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_2/expand/scale" | |
type: "Scale" | |
bottom: "conv6_2/expand/bn" | |
top: "conv6_2/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_2/expand" | |
type: "ReLU" | |
bottom: "conv6_2/expand/bn" | |
top: "conv6_2/expand/bn" | |
} | |
layer { | |
name: "conv6_2/dwise" | |
type: "Convolution" | |
bottom: "conv6_2/expand/bn" | |
top: "conv6_2/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 960 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv6_2/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv6_2/dwise" | |
top: "conv6_2/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_2/dwise/scale" | |
type: "Scale" | |
bottom: "conv6_2/dwise/bn" | |
top: "conv6_2/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_2/dwise" | |
type: "ReLU" | |
bottom: "conv6_2/dwise/bn" | |
top: "conv6_2/dwise/bn" | |
} | |
layer { | |
name: "conv6_2/linear" | |
type: "Convolution" | |
bottom: "conv6_2/dwise/bn" | |
top: "conv6_2/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_2/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv6_2/linear" | |
top: "conv6_2/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_2/linear/scale" | |
type: "Scale" | |
bottom: "conv6_2/linear/bn" | |
top: "conv6_2/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "block_6_2" | |
type: "Eltwise" | |
bottom: "block_6_1" | |
bottom: "conv6_2/linear/bn" | |
top: "block_6_2" | |
} | |
layer { | |
name: "conv6_3/expand" | |
type: "Convolution" | |
bottom: "block_6_2" | |
top: "conv6_3/expand" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_3/expand/bn" | |
type: "BatchNorm" | |
bottom: "conv6_3/expand" | |
top: "conv6_3/expand/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_3/expand/scale" | |
type: "Scale" | |
bottom: "conv6_3/expand/bn" | |
top: "conv6_3/expand/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_3/expand" | |
type: "ReLU" | |
bottom: "conv6_3/expand/bn" | |
top: "conv6_3/expand/bn" | |
} | |
layer { | |
name: "conv6_3/dwise" | |
type: "Convolution" | |
bottom: "conv6_3/expand/bn" | |
top: "conv6_3/dwise" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 960 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 960 | |
weight_filler { | |
type: "msra" | |
} | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "conv6_3/dwise/bn" | |
type: "BatchNorm" | |
bottom: "conv6_3/dwise" | |
top: "conv6_3/dwise/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_3/dwise/scale" | |
type: "Scale" | |
bottom: "conv6_3/dwise/bn" | |
top: "conv6_3/dwise/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_3/dwise" | |
type: "ReLU" | |
bottom: "conv6_3/dwise/bn" | |
top: "conv6_3/dwise/bn" | |
} | |
layer { | |
name: "conv6_3/linear" | |
type: "Convolution" | |
bottom: "conv6_3/dwise/bn" | |
top: "conv6_3/linear" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_3/linear/bn" | |
type: "BatchNorm" | |
bottom: "conv6_3/linear" | |
top: "conv6_3/linear/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_3/linear/scale" | |
type: "Scale" | |
bottom: "conv6_3/linear/bn" | |
top: "conv6_3/linear/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv6_4" | |
type: "Convolution" | |
bottom: "conv6_3/linear/bn" | |
top: "conv6_4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1280 | |
bias_term: false | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6_4/bn" | |
type: "BatchNorm" | |
bottom: "conv6_4" | |
top: "conv6_4/bn" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6_4/scale" | |
type: "Scale" | |
bottom: "conv6_4/bn" | |
top: "conv6_4/bn" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6_4" | |
type: "ReLU" | |
bottom: "conv6_4/bn" | |
top: "conv6_4/bn" | |
} | |
layer { | |
name: "pool6" | |
type: "Pooling" | |
bottom: "conv6_4/bn" | |
top: "pool6" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "pool6" | |
top: "fc7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1000 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "fc8" | |
type: "InnerProduct" | |
bottom: "fc7" | |
top: "fc8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
# Since num_output is unset, DIGITS will automatically set it to the | |
# number of classes in your dataset. | |
# Uncomment this line to set it explicitly: | |
#num_output: 1000 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "fc8" | |
bottom: "label" | |
top: "accuracy" | |
include { stage: "val" } | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "fc8" | |
bottom: "label" | |
top: "loss" | |
exclude { stage: "deploy" } | |
} | |
layer { | |
name: "softmax" | |
type: "Softmax" | |
bottom: "fc8" | |
top: "softmax" | |
include { stage: "deploy" } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment