Last active
December 23, 2021 14:17
-
-
Save kndt84/a9af7b1bfed3324de13ae95cceaf6766 to your computer and use it in GitHub Desktop.
MobileNet caffe implementation for NVIDIA DIGITS
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "MOBILENET" | |
layer { | |
name: "train-data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
transform_param { | |
mirror: true | |
crop_size: 224 | |
} | |
data_param { | |
batch_size: 32 | |
} | |
include { stage: "train" } | |
} | |
layer { | |
name: "val-data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
transform_param { | |
mirror: false | |
crop_size: 224 | |
} | |
data_param { | |
batch_size: 16 | |
} | |
include { stage: "val" } | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv1/bn" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv1/scale" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "conv2_1/dw" | |
type: "Convolution" | |
bottom: "conv1" | |
top: "conv2_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 32 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_1/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv2_1/dw" | |
top: "conv2_1/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_1/dw/scale" | |
type: "Scale" | |
bottom: "conv2_1/dw" | |
top: "conv2_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_1/dw" | |
type: "ReLU" | |
bottom: "conv2_1/dw" | |
top: "conv2_1/dw" | |
} | |
layer { | |
name: "conv2_1/sep" | |
type: "Convolution" | |
bottom: "conv2_1/dw" | |
top: "conv2_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_1/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv2_1/sep" | |
top: "conv2_1/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_1/sep/scale" | |
type: "Scale" | |
bottom: "conv2_1/sep" | |
top: "conv2_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_1/sep" | |
type: "ReLU" | |
bottom: "conv2_1/sep" | |
top: "conv2_1/sep" | |
} | |
layer { | |
name: "conv2_2/dw" | |
type: "Convolution" | |
bottom: "conv2_1/sep" | |
top: "conv2_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 64 | |
engine: CAFFE | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_2/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv2_2/dw" | |
top: "conv2_2/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_2/dw/scale" | |
type: "Scale" | |
bottom: "conv2_2/dw" | |
top: "conv2_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_2/dw" | |
type: "ReLU" | |
bottom: "conv2_2/dw" | |
top: "conv2_2/dw" | |
} | |
layer { | |
name: "conv2_2/sep" | |
type: "Convolution" | |
bottom: "conv2_2/dw" | |
top: "conv2_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv2_2/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv2_2/sep" | |
top: "conv2_2/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv2_2/sep/scale" | |
type: "Scale" | |
bottom: "conv2_2/sep" | |
top: "conv2_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_2/sep" | |
type: "ReLU" | |
bottom: "conv2_2/sep" | |
top: "conv2_2/sep" | |
} | |
layer { | |
name: "conv3_1/dw" | |
type: "Convolution" | |
bottom: "conv2_2/sep" | |
top: "conv3_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 128 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_1/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv3_1/dw" | |
top: "conv3_1/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_1/dw/scale" | |
type: "Scale" | |
bottom: "conv3_1/dw" | |
top: "conv3_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_1/dw" | |
type: "ReLU" | |
bottom: "conv3_1/dw" | |
top: "conv3_1/dw" | |
} | |
layer { | |
name: "conv3_1/sep" | |
type: "Convolution" | |
bottom: "conv3_1/dw" | |
top: "conv3_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_1/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv3_1/sep" | |
top: "conv3_1/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_1/sep/scale" | |
type: "Scale" | |
bottom: "conv3_1/sep" | |
top: "conv3_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_1/sep" | |
type: "ReLU" | |
bottom: "conv3_1/sep" | |
top: "conv3_1/sep" | |
} | |
layer { | |
name: "conv3_2/dw" | |
type: "Convolution" | |
bottom: "conv3_1/sep" | |
top: "conv3_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 128 | |
engine: CAFFE | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_2/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv3_2/dw" | |
top: "conv3_2/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_2/dw/scale" | |
type: "Scale" | |
bottom: "conv3_2/dw" | |
top: "conv3_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_2/dw" | |
type: "ReLU" | |
bottom: "conv3_2/dw" | |
top: "conv3_2/dw" | |
} | |
layer { | |
name: "conv3_2/sep" | |
type: "Convolution" | |
bottom: "conv3_2/dw" | |
top: "conv3_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv3_2/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv3_2/sep" | |
top: "conv3_2/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv3_2/sep/scale" | |
type: "Scale" | |
bottom: "conv3_2/sep" | |
top: "conv3_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_2/sep" | |
type: "ReLU" | |
bottom: "conv3_2/sep" | |
top: "conv3_2/sep" | |
} | |
layer { | |
name: "conv4_1/dw" | |
type: "Convolution" | |
bottom: "conv3_2/sep" | |
top: "conv4_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 256 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_1/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv4_1/dw" | |
top: "conv4_1/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_1/dw/scale" | |
type: "Scale" | |
bottom: "conv4_1/dw" | |
top: "conv4_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_1/dw" | |
type: "ReLU" | |
bottom: "conv4_1/dw" | |
top: "conv4_1/dw" | |
} | |
layer { | |
name: "conv4_1/sep" | |
type: "Convolution" | |
bottom: "conv4_1/dw" | |
top: "conv4_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_1/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv4_1/sep" | |
top: "conv4_1/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_1/sep/scale" | |
type: "Scale" | |
bottom: "conv4_1/sep" | |
top: "conv4_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_1/sep" | |
type: "ReLU" | |
bottom: "conv4_1/sep" | |
top: "conv4_1/sep" | |
} | |
layer { | |
name: "conv4_2/dw" | |
type: "Convolution" | |
bottom: "conv4_1/sep" | |
top: "conv4_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 256 | |
engine: CAFFE | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_2/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv4_2/dw" | |
top: "conv4_2/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_2/dw/scale" | |
type: "Scale" | |
bottom: "conv4_2/dw" | |
top: "conv4_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_2/dw" | |
type: "ReLU" | |
bottom: "conv4_2/dw" | |
top: "conv4_2/dw" | |
} | |
layer { | |
name: "conv4_2/sep" | |
type: "Convolution" | |
bottom: "conv4_2/dw" | |
top: "conv4_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv4_2/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv4_2/sep" | |
top: "conv4_2/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv4_2/sep/scale" | |
type: "Scale" | |
bottom: "conv4_2/sep" | |
top: "conv4_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_2/sep" | |
type: "ReLU" | |
bottom: "conv4_2/sep" | |
top: "conv4_2/sep" | |
} | |
layer { | |
name: "conv5_1/dw" | |
type: "Convolution" | |
bottom: "conv4_2/sep" | |
top: "conv5_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_1/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_1/dw" | |
top: "conv5_1/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_1/dw/scale" | |
type: "Scale" | |
bottom: "conv5_1/dw" | |
top: "conv5_1/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_1/dw" | |
type: "ReLU" | |
bottom: "conv5_1/dw" | |
top: "conv5_1/dw" | |
} | |
layer { | |
name: "conv5_1/sep" | |
type: "Convolution" | |
bottom: "conv5_1/dw" | |
top: "conv5_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_1/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_1/sep" | |
top: "conv5_1/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_1/sep/scale" | |
type: "Scale" | |
bottom: "conv5_1/sep" | |
top: "conv5_1/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_1/sep" | |
type: "ReLU" | |
bottom: "conv5_1/sep" | |
top: "conv5_1/sep" | |
} | |
layer { | |
name: "conv5_2/dw" | |
type: "Convolution" | |
bottom: "conv5_1/sep" | |
top: "conv5_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_2/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_2/dw" | |
top: "conv5_2/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_2/dw/scale" | |
type: "Scale" | |
bottom: "conv5_2/dw" | |
top: "conv5_2/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_2/dw" | |
type: "ReLU" | |
bottom: "conv5_2/dw" | |
top: "conv5_2/dw" | |
} | |
layer { | |
name: "conv5_2/sep" | |
type: "Convolution" | |
bottom: "conv5_2/dw" | |
top: "conv5_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_2/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_2/sep" | |
top: "conv5_2/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_2/sep/scale" | |
type: "Scale" | |
bottom: "conv5_2/sep" | |
top: "conv5_2/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_2/sep" | |
type: "ReLU" | |
bottom: "conv5_2/sep" | |
top: "conv5_2/sep" | |
} | |
layer { | |
name: "conv5_3/dw" | |
type: "Convolution" | |
bottom: "conv5_2/sep" | |
top: "conv5_3/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_3/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_3/dw" | |
top: "conv5_3/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_3/dw/scale" | |
type: "Scale" | |
bottom: "conv5_3/dw" | |
top: "conv5_3/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_3/dw" | |
type: "ReLU" | |
bottom: "conv5_3/dw" | |
top: "conv5_3/dw" | |
} | |
layer { | |
name: "conv5_3/sep" | |
type: "Convolution" | |
bottom: "conv5_3/dw" | |
top: "conv5_3/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_3/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_3/sep" | |
top: "conv5_3/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_3/sep/scale" | |
type: "Scale" | |
bottom: "conv5_3/sep" | |
top: "conv5_3/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_3/sep" | |
type: "ReLU" | |
bottom: "conv5_3/sep" | |
top: "conv5_3/sep" | |
} | |
layer { | |
name: "conv5_4/dw" | |
type: "Convolution" | |
bottom: "conv5_3/sep" | |
top: "conv5_4/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_4/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_4/dw" | |
top: "conv5_4/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_4/dw/scale" | |
type: "Scale" | |
bottom: "conv5_4/dw" | |
top: "conv5_4/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_4/dw" | |
type: "ReLU" | |
bottom: "conv5_4/dw" | |
top: "conv5_4/dw" | |
} | |
layer { | |
name: "conv5_4/sep" | |
type: "Convolution" | |
bottom: "conv5_4/dw" | |
top: "conv5_4/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_4/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_4/sep" | |
top: "conv5_4/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_4/sep/scale" | |
type: "Scale" | |
bottom: "conv5_4/sep" | |
top: "conv5_4/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_4/sep" | |
type: "ReLU" | |
bottom: "conv5_4/sep" | |
top: "conv5_4/sep" | |
} | |
layer { | |
name: "conv5_5/dw" | |
type: "Convolution" | |
bottom: "conv5_4/sep" | |
top: "conv5_5/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_5/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_5/dw" | |
top: "conv5_5/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_5/dw/scale" | |
type: "Scale" | |
bottom: "conv5_5/dw" | |
top: "conv5_5/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_5/dw" | |
type: "ReLU" | |
bottom: "conv5_5/dw" | |
top: "conv5_5/dw" | |
} | |
layer { | |
name: "conv5_5/sep" | |
type: "Convolution" | |
bottom: "conv5_5/dw" | |
top: "conv5_5/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_5/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_5/sep" | |
top: "conv5_5/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_5/sep/scale" | |
type: "Scale" | |
bottom: "conv5_5/sep" | |
top: "conv5_5/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_5/sep" | |
type: "ReLU" | |
bottom: "conv5_5/sep" | |
top: "conv5_5/sep" | |
} | |
layer { | |
name: "conv5_6/dw" | |
type: "Convolution" | |
bottom: "conv5_5/sep" | |
top: "conv5_6/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 512 | |
engine: CAFFE | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_6/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv5_6/dw" | |
top: "conv5_6/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_6/dw/scale" | |
type: "Scale" | |
bottom: "conv5_6/dw" | |
top: "conv5_6/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_6/dw" | |
type: "ReLU" | |
bottom: "conv5_6/dw" | |
top: "conv5_6/dw" | |
} | |
layer { | |
name: "conv5_6/sep" | |
type: "Convolution" | |
bottom: "conv5_6/dw" | |
top: "conv5_6/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv5_6/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv5_6/sep" | |
top: "conv5_6/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv5_6/sep/scale" | |
type: "Scale" | |
bottom: "conv5_6/sep" | |
top: "conv5_6/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu5_6/sep" | |
type: "ReLU" | |
bottom: "conv5_6/sep" | |
top: "conv5_6/sep" | |
} | |
layer { | |
name: "conv6/dw" | |
type: "Convolution" | |
bottom: "conv5_6/sep" | |
top: "conv6/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
group: 1024 | |
engine: CAFFE | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6/dw/bn" | |
type: "BatchNorm" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6/dw/scale" | |
type: "Scale" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu6/dw" | |
type: "ReLU" | |
bottom: "conv6/dw" | |
top: "conv6/dw" | |
} | |
layer { | |
name: "conv6/sep" | |
type: "Convolution" | |
bottom: "conv6/dw" | |
top: "conv6/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
num_output: 1024 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "conv6/sep/bn" | |
type: "BatchNorm" | |
bottom: "conv6/sep" | |
top: "conv6/sep" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: true | |
eps: 1e-5 | |
} | |
} | |
layer { | |
name: "conv6/sep/scale" | |
type: "Scale" | |
bottom: "conv6/sep" | |
top: "conv6/sep" | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 1 | |
decay_mult: 0 | |
} | |
scale_param { | |
filler { | |
value: 1 | |
} | |
bias_term: true | |
bias_filler { | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu6/sep" | |
type: "ReLU" | |
bottom: "conv6/sep" | |
top: "conv6/sep" | |
} | |
layer { | |
name: "pool6" | |
type: "Pooling" | |
bottom: "conv6/sep" | |
top: "pool6" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "pool6" | |
top: "fc7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
#num_output: 1000 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "fc8" | |
type: "InnerProduct" | |
bottom: "fc7" | |
top: "fc8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
# Since num_output is unset, DIGITS will automatically set it to the | |
# number of classes in your dataset. | |
# Uncomment this line to set it explicitly: | |
#num_output: 1000 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "fc8" | |
bottom: "label" | |
top: "accuracy" | |
include { stage: "val" } | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "fc8" | |
bottom: "label" | |
top: "loss" | |
exclude { stage: "deploy" } | |
} | |
layer { | |
name: "softmax" | |
type: "Softmax" | |
bottom: "fc8" | |
top: "softmax" | |
include { stage: "deploy" } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment