Skip to content

Instantly share code, notes, and snippets.

@knok
Last active December 12, 2017 23:48
Show Gist options
  • Save knok/99315276e15c4708189c664280b759ab to your computer and use it in GitHub Desktop.
Save knok/99315276e15c4708189c664280b759ab to your computer and use it in GitHub Desktop.
フレンズ画像を生成させてみたい-画像収集編+DCGAN ref: https://qiita.com/knok/items/3f3c1d3eef4b435ed37e
# -*- coding: utf-8 -*-
from bs4 import BeautifulSoup
import urllib.request
import urllib.parse
import time
import os
wait_sec = 5
start_url = 'https://kemono-friends.gamerch.com/%E3%82%AD%E3%83%A3%E3%83%A9%E4%B8%80%E8%A6%A7'
base_url = 'https://kemono-friends.gamerch.com'
output_dir = 'save'
html = urllib.request.urlopen(start_url)
soup = BeautifulSoup(html, 'lxml')
elems = soup.select('a[href^="/"]')
vals = []
for e in elems:
p = e.parent
if p.name == 'td':
vals.append(e)
#import pdb; pdb.set_trace()
time.sleep(wait_sec)
for v in vals:
c = v['href']
page_url = base_url + urllib.parse.quote(c)
html = urllib.request.urlopen(page_url)
soup = BeautifulSoup(html, 'lxml')
imgs = soup.select('a[href$=".jpg"]')
for i in imgs:
jpg_url = i['href']
fname = os.path.basename(jpg_url)
fname = os.path.join(output_dir, fname)
if os.path.exists(fname):
#import pdb; pdb.set_trace()
print("skip %s" % fname)
continue
with open(fname, "wb") as f:
raw_img = urllib.request.urlopen(jpg_url).read()
f.write(raw_img)
#
print("%s saved" % fname)
time.sleep(wait_sec)
$ for i in $(seq 1 82); do \
wget https://umabi.jp/kemono-friends/shindan/asset/img/result/character/$i.png; \
sleep 5; done
#!/bin/sh
INDIR=$1
OUTDIR=$2
SIZE=32x32
mkdir -p $OUTDIR
FILES=$(cd $INDIR; ls *)
for fname in $FILES
do
convert $INDIR/$fname -resize $SIZE \
\( +clone -alpha opaque -fill white -colorize 100% \) +swap \
-geometry +0+0 -compose Over -composite -alpha off \
-gravity center -extent $SIZE \
$OUTDIR/$fname
done
$ python dataset/cifar10like.py --data-dir /path/to/32x32img image.npz
$ python c10like-train.py -g 0 \ # c10like-train.py: 任意の32x32カラー画像を訓練するスクリプト
--image-npz image.npz -o result-c10like-dcgan \ # result-c10like-dcgan に出力
--algorithm dcgan --adam_alpha 0.0001 --adam_beta1 0.5 \
--adam_beta2 0.9 --snapshot-iter 2000
$ cat result-c10like-dcgan/log
[
{
"loss_dis": 0.039919644594192505,
"loss_gen": 9.003257751464844,
"epoch": 78,
"iteration": 100,
"elapsed_time": 56.77760434150696
},
{
"loss_dis": 0.0010271351784467697,
"loss_gen": 9.35523509979248,
"epoch": 156,
"iteration": 200,
"elapsed_time": 87.36827898025513
}
]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment