Created
April 22, 2017 15:04
-
-
Save koaning/52b0f096afbaf59b7ad8174dda6eabbb to your computer and use it in GitHub Desktop.
tensorflow and tensorboard gradient search
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import os | |
import uuid | |
TENSORBOARD_PATH = "/tmp/tensorboard-switchpoint" | |
# tensorboard --logdir=/tmp/tensorboard-switchpoint | |
x1 = np.random.randn(35)-1 | |
x2 = np.random.randn(35)*2 + 5 | |
x_all = np.hstack([x1, x2]) | |
len_x = len(x_all) | |
time_all = np.arange(1, len_x + 1) | |
mu1 = tf.Variable(0, name="mu1", dtype=tf.float32) | |
mu2 = tf.Variable(0, name = "mu2", dtype=tf.float32) | |
sigma1 = tf.Variable(2, name = "sigma1", dtype=tf.float32) | |
sigma2 = tf.Variable(2, name = "sigma2", dtype=tf.float32) | |
tau = tf.Variable(15, name = "tau", dtype=tf.float32) | |
switch = 1./(1+tf.exp(tf.pow(time_all - tau, 1))) | |
mu = switch*mu1 + (1-switch)*mu2 | |
sigma = switch*sigma1 + (1-switch)*sigma2 | |
likelihood_arr = tf.log(tf.sqrt(1/(2*np.pi*tf.pow(sigma, 2)))) - tf.pow(x_all - mu, 2)/(2*tf.pow(sigma, 2)) | |
total_likelihood = tf.reduce_sum(likelihood_arr, name="total_likelihood") | |
optimizer = tf.train.AdamOptimizer() | |
opt_task = optimizer.minimize(-total_likelihood) | |
init = tf.global_variables_initializer() | |
tf.summary.scalar("mu1", mu1) | |
tf.summary.scalar("mu2", mu2) | |
tf.summary.scalar("sigma1", sigma1) | |
tf.summary.scalar("sigma2", sigma2) | |
tf.summary.scalar("tau", tau) | |
tf.summary.scalar("likelihood", total_likelihood) | |
merged_summary_op = tf.summary.merge_all() | |
with tf.Session() as sess: | |
sess.run(init) | |
print("these variables should be trainable: {}".format([_.name for _ in tf.trainable_variables()])) | |
uniq_id = os.path.join(TENSORBOARD_PATH, "switchpoint-adam-" + uuid.uuid1().__str__()[:4]) | |
summary_writer = tf.summary.FileWriter(uniq_id, graph=tf.get_default_graph()) | |
for step in range(15000): | |
lik, opt, summary = sess.run([total_likelihood, opt_task, merged_summary_op]) | |
if step % 100 == 0: | |
variables = {_.name:_.eval() for _ in [total_likelihood]} | |
summary_writer.add_summary(summary, step) | |
print("i{}: {}".format(str(step).zfill(5), variables)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment