Created
May 9, 2018 09:29
-
-
Save kohske/2da668635171993e768d56318124ada7 to your computer and use it in GitHub Desktop.
score付きpromax2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# zmatにはfactanalに渡したデータをもう一度渡す(因子得点計算用) | |
promax2 <- function (x, power = 4, kaiser = TRUE, zmat = NULL) | |
{ | |
if (!is.matrix(x) & !is.data.frame(x)) { | |
if (!is.null(x$loadings)) | |
x <- as.matrix(x$loadings) | |
} | |
else { | |
x <- x | |
} | |
if (ncol(x) < 2) | |
return(x) | |
dn <- dimnames(x) | |
xx <- varimax(x, normalize = kaiser) | |
temp <- list() | |
for(i in 1:ncol(xx$loading)){ | |
temp[[i]] <- apply(abs(xx$loading^2),1,sum) | |
} | |
temp <- t(matrix(unlist(temp),nrow=ncol(xx$loading),byrow=nrow(xx$loading))) | |
xxx <- (xx$loadings/temp^0.5) | |
Q <- xxx * abs(xxx)^(power - 1) | |
U <- lm.fit(x, Q)$coefficients | |
d <- try(diag(solve(t(U) %*% U)), silent = TRUE) | |
if (class(d) == "try-error") { | |
warning("Factors are exactly uncorrelated and the model produces a singular matrix. An approximation is used") | |
ev <- eigen(t(U) %*% U) | |
ev$values[ev$values < .Machine$double.eps] <- 100 * .Machine$double.eps | |
UU <- ev$vectors %*% diag(ev$values) %*% t(ev$vectors) | |
diag(UU) <- 1 | |
d <- diag(solve(UU)) | |
} | |
U <- U %*% diag(sqrt(d)) | |
dimnames(U) <- NULL | |
z <- x %*% U | |
U <- xx$rotmat%*%U | |
ui <- solve(U) | |
Phi <- ui %*% t(ui) | |
dimnames(z) <- dn | |
class(z) <- "loadings" | |
result <- list(loadings = z, rotmat = U, Phi = Phi) | |
# score | |
# 例外処理してないので要注意・・・ | |
if (!is.null(zmat)) { | |
zmat = as.matrix(zmat) | |
scores = "Bartlett" | |
Lambda <- result$loadings | |
zz <- scale(zmat, TRUE, TRUE) | |
switch(scores, regression = { | |
covmat <- cov.wt(zmat) | |
cv <- covmat$cov | |
sc <- zz %*% solve(cv, Lambda) | |
if (!is.null(Phi <- attr(Lambda, "covariance"))) sc <- sc %*% | |
Phi | |
}, Bartlett = { | |
# uniqunessを計算 | |
uniqueness = fa2un(result) | |
Lambda <- result$loadings | |
d <- 1/(uniqueness[[2]]) | |
tmp <- t(Lambda * d) | |
sc <- t(solve(tmp %*% Lambda, tmp %*% t(zz))) | |
}) | |
rownames(sc) <- rownames(zmat) | |
colnames(sc) <- colnames(Lambda) | |
# 欠損値処理は省略 | |
# if (!is.null(na.act)) | |
# sc <- napredict(na.act, sc) | |
result$scores <- sc | |
} | |
class(result) <- c("psych", "fa") | |
return(result) | |
} | |
# print.psych.faよりuniquness計算 | |
fa2un = function(x, digits = 2, all = FALSE, cut = NULL, sort = FALSE, | |
suppress.warnings = TRUE, ...) | |
{ | |
#if (!is.matrix(x) && !is.null(x$fa) && is.list(x$fa)) | |
# x <- x$fa | |
load <- x$loadings | |
cut <- 0 | |
nitems <- dim(load)[1] | |
nfactors <- dim(load)[2] | |
if (sum(x$uniqueness) + sum(x$communality) > nitems) { | |
covar <- TRUE | |
} | |
else { | |
covar <- FALSE | |
} | |
loads <- data.frame(item = seq(1:nitems), cluster = rep(0, | |
nitems), unclass(load)) | |
u2.order <- 1:nitems | |
if (sort) { | |
loads$cluster <- apply(abs(load), 1, which.max) | |
ord <- sort(loads$cluster, index.return = TRUE) | |
loads[1:nitems, ] <- loads[ord$ix, ] | |
rownames(loads)[1:nitems] <- rownames(loads)[ord$ix] | |
items <- table(loads$cluster) | |
first <- 1 | |
item <- loads$item | |
for (i in 1:length(items)) { | |
if (items[i] > 0) { | |
last <- first + items[i] - 1 | |
ord <- sort(abs(loads[first:last, i + 2]), decreasing = TRUE, | |
index.return = TRUE) | |
u2.order[first:last] <- item[ord$ix + first - | |
1] | |
loads[first:last, 3:(nfactors + 2)] <- load[item[ord$ix + | |
first - 1], ] | |
loads[first:last, 1] <- item[ord$ix + first - | |
1] | |
rownames(loads)[first:last] <- rownames(loads)[ord$ix + | |
first - 1] | |
first <- first + items[i] | |
} | |
} | |
} | |
if (max(abs(load) > 1) && !covar) | |
cat("\n Warning: A Heywood case was detected. \n") | |
ncol <- dim(loads)[2] - 2 | |
rloads <- round(loads, digits) | |
fx <- format(rloads, digits = digits) | |
nc <- nchar(fx[1, 3], type = "c") | |
fx.1 <- fx[, 1, drop = FALSE] | |
fx.2 <- fx[, 3:(2 + ncol), drop = FALSE] | |
load.2 <- as.matrix(loads[, 3:(ncol + 2)]) | |
fx.2[abs(load.2) < cut] <- paste(rep(" ", nc), collapse = "") | |
if (sort) { | |
fx <- data.frame(V = fx.1, fx.2) | |
if (dim(fx)[2] < 3) | |
colnames(fx) <- c("V", colnames(x$loadings)) | |
} | |
else { | |
fx <- data.frame(fx.2) | |
colnames(fx) <- colnames(x$loadings) | |
} | |
if (nfactors > 1) { | |
if (is.null(x$Phi)) { | |
h2 <- rowSums(load.2^2) | |
} | |
else { | |
h2 <- diag(load.2 %*% x$Phi %*% t(load.2)) | |
} | |
} | |
else { | |
h2 <- load.2^2 | |
} | |
if (!is.null(x$uniquenesses)) { | |
u2 <- x$uniquenesses[u2.order] | |
} | |
else { | |
u2 <- (1 - h2) | |
} | |
list(h2, u2) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment