Created
November 21, 2024 16:46
-
-
Save kolibril13/722dbe32fa3c06623a02289cfb168693 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# /// script | |
# requires-python = ">=3.11,<3.12" | |
# dependencies = [ | |
# "bpy==4.2.0", | |
# "marimo", | |
# "numpy==2.1.3", | |
# "polars==1.14.0", | |
# "quak==0.2.1", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.9.19" | |
app = marimo.App(width="medium") | |
@app.cell(hide_code=True) | |
def __(mo): | |
mo.md(r"""# California: Self-contained""") | |
return | |
@app.cell | |
def __(): | |
import urllib.request | |
from pathlib import Path | |
files = { | |
"a_df.csv": "https://huggingface.co/spaces/sci-blender/bpy_marimo_california/resolve/main/a_df.csv?download=true", | |
"b_reference_frame.csv": "https://huggingface.co/spaces/sci-blender/bpy_marimo_california/resolve/main/b_reference_frame.csv?download=true", | |
"housing_data_igor.blend": "https://huggingface.co/spaces/sci-blender/bpy_marimo_california/resolve/main/housing_data_igor.blend?download=true", | |
} | |
output_dir = Path.cwd() | |
output_dir.mkdir(exist_ok=True) | |
for name, url in files.items(): | |
file_path = output_dir / name | |
if not file_path.exists(): | |
urllib.request.urlretrieve(url, file_path) | |
print(f"Downloaded {name}") | |
else: | |
print(f"{name} already exists.") | |
return Path, file_path, files, name, output_dir, url, urllib | |
@app.cell | |
def __(): | |
import bpy | |
import marimo as mo | |
from math import radians | |
bpy.context.scene.render.engine = 'CYCLES' | |
bpy.context.scene.cycles.samples = 128 | |
bpy.context.scene.render.resolution_x = 500 | |
bpy.context.scene.render.resolution_y = 500 | |
return bpy, mo, radians | |
@app.cell | |
def __(bpy, mo): | |
#run with | |
#cd california_housing | |
#uv run marimo edit marimo_california.py | |
import numpy as np | |
import polars as pl | |
import quak | |
blend_file_path = "housing_data_igor.blend" | |
bpy.ops.wm.open_mainfile(filepath=blend_file_path) | |
bpy.context.scene.render.engine = "BLENDER_EEVEE_NEXT" | |
bpy.context.scene.render.resolution_x = 800 | |
bpy.context.scene.render.resolution_y = 500 | |
df = pl.read_csv("a_df.csv") | |
reference_frame = pl.read_csv("b_reference_frame.csv") | |
vertices = [(row["longitude_normalized"], row["latitude_normalized"], 0) for row in reference_frame.iter_rows(named=True)] | |
mesh = bpy.data.meshes.new("NormalizedMesh") | |
obj = bpy.data.objects.new("CaliforninaNormalizedObject", mesh) | |
bpy.context.collection.objects.link(obj) | |
mesh.from_pydata(vertices, [], []) | |
mesh.update() | |
obj.modifiers.new(name="GeometryNodes", type='NODES').node_group = bpy.data.node_groups["geo_house"] | |
bpy.context.view_layer.objects.active = obj | |
obj.select_set(True) | |
reference_frame.head() | |
def render_result(): | |
bpy.ops.render.render() | |
bpy.data.images['Render Result'].save_render(filepath="img.png") | |
return mo.image(src="img.png") | |
return ( | |
blend_file_path, | |
df, | |
mesh, | |
np, | |
obj, | |
pl, | |
quak, | |
reference_frame, | |
render_result, | |
vertices, | |
) | |
@app.cell | |
def __(df, mo, quak): | |
widget = mo.ui.anywidget(quak.Widget(df)) | |
widget | |
return (widget,) | |
@app.cell | |
def __(np, obj, pl, reference_frame, render_result, widget): | |
widget_df = widget.data().pl() | |
plotting_frame = reference_frame.with_columns( | |
pl.lit(0).alias("custom_plotting") | |
).join( | |
widget_df.select(["short_id", "median_house_value"]), | |
on="short_id", | |
how="left" | |
).with_columns( | |
pl.when(pl.col("median_house_value").is_not_null()) | |
.then(pl.col("median_house_value")) | |
.otherwise(pl.col("custom_plotting")) | |
.alias("custom_plotting") | |
).select(["short_id", "custom_plotting"]) | |
custom_plotting_list = plotting_frame["custom_plotting"].to_list() | |
normalized_values = list(np.interp(custom_plotting_list, | |
(min(custom_plotting_list), max(custom_plotting_list)), | |
(0.1, 3))) | |
attr_name = 'median_house_value' | |
attr = obj.data.attributes.get(attr_name) or obj.data.attributes.new( | |
name=attr_name, | |
type='FLOAT', | |
domain='POINT' | |
) | |
attr.data.foreach_set('value', normalized_values) | |
obj.data.update() | |
render_result() | |
return ( | |
attr, | |
attr_name, | |
custom_plotting_list, | |
normalized_values, | |
plotting_frame, | |
widget_df, | |
) | |
@app.cell | |
def __(): | |
return | |
if __name__ == "__main__": | |
app.run() |
Author
kolibril13
commented
Nov 21, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment