Last active
March 16, 2017 15:24
-
-
Save konn/3cf3d6567ab26ed45202ce88ff165de7 to your computer and use it in GitHub Desktop.
Deeply embedded Automatic Differentiation in Lambda Prolog
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module diff. | |
%% First attempt: | |
% Automatic differentiation, easy (i.e. non-composite) case. | |
% Lambda Prolog supports pattern-matching on lambdas, | |
% so we can use it to define "deep-embedded" autodiffs: | |
% We can exploit the higher-order expressiveness of Lambda Prolog | |
% to express that "F is a constant function". | |
ediff F (X : real\ 0.0) :- pi Y\ pi X\ F X = F 0.0, !. | |
ediff (X\ X) (X : real\ 1.0) :- !. | |
ediff (X\ ~ F X) (X\ ~ G X) :- ediff F G, !. | |
ediff sin cos :- !. | |
ediff cos (X\~ sin X) :- !. | |
ediff (X\ F X + G X) (X\ F' X + G' X) :- | |
!, ediff F F', ediff G G'. | |
ediff (X\ F X - G X) (X\ F' X - G' X) :- | |
!, ediff F F', ediff G G'. | |
ediff (X\ F X * G X) (X\ F' X * G X + F X * G' X) :- | |
!, ediff F F', ediff G G'. | |
ediff sqrt (X\ 1.0 / (2.0 * sqrt X)) :- !. | |
ediff (X\ F X / G X) (X\ (F' X / G X) - (F X * G' X / (G X * G X))) :- | |
!, ediff F F', ediff G G'. | |
% If we add the following rule, computation explodes. | |
% ediff (X\F (G X)) (X \ F' (G X) * G' X) :- | |
% ediff F F', ediff G G'. | |
%% Second attempt: | |
% Automatic differentiation, which supports composition. | |
% We declare each rule in a composite form to avoid explosion. | |
adiff (X\ X) (X\ 1.0) :- !. | |
adiff F (X : real\ 0.0) :- | |
pi X\ F X = F 0.0, !. | |
adiff (X\ A * F X) (X\ A * F' X) :- !, adiff F F'. | |
adiff (X\ ~ (F X)) (X\ ~ (F' X)) :- !, adiff F F'. | |
adiff (X\ sin (F X)) (X\ cos (F X) * F' X) :- !, adiff F F'. | |
adiff (X\ cos (F X)) (X\ ~ sin (F X) * F' X) :- !, adiff F F'. | |
adiff (X\ F X + G X) (X\ F' X + G' X) :- | |
!, adiff F F', adiff G G'. | |
adiff (X\ F X - G X) (X\ F' X - G' X) :- | |
!, adiff F F', adiff G G'. | |
adiff (X\ F X * G X) (X\ F' X * G X + F X * G' X) :- | |
!, adiff F F', adiff G G'. | |
adiff (X\ F X / G X) (X\ (F' X / G X) - (F X * G' X / (G X * G X))) :- | |
!, adiff F F', adiff G G'. | |
adiff (X\ sqrt (F X)) (X\ F' X / (2.0 * sqrt (F X))) :- | |
!, adiff F F'. | |
ndiff 0 F F :- !. | |
ndiff N F Fn :- | |
N > 0, M is N - 1, ndiff M F F', adiff F' Fn. | |
%% Taylor series. | |
taylor X0 F S :- maclaurin (X\ F (X - X0)) S. | |
%% Maclaurin series. | |
maclaurin F S :- | |
machelper F S0, | |
facts Fs, | |
zipped macTerm Fs S0 S. | |
% local macTerm int -> real -> real -> o. | |
macTerm N X Y :- Z is int_to_real N, Y is (X / Z). | |
% local machelper (real -> real) -> stream real -> o. | |
machelper F S :- | |
adiff F F', Y is F 0.0, scons Y (machelper F') S. | |
% local facts stream A -> o. | |
facts (1 # value S) :- facHelper 1 1 S. | |
facHelper N K Ns :- | |
M is N * K, N' is N + 1, scons M (facHelper N' M) Ns. | |
%% Helper functions. | |
scons A P (A # thunk P). | |
force (value X) X. | |
force (thunk P) X :- P X. | |
take 0 _ [] :- !. | |
take N (X # P) (X :: Xs) :- | |
N > 0, force P T, M is N - 1, take M T Xs. | |
zipped P (X # S) (Y # T) U :- | |
P X Y Z, | |
force S S', force T T', | |
scons Z (zipped P S' T') U. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sig diff. | |
%% Automatic differentiation | |
% Deeply embedded automatic differentiation, without support for composition. | |
exportdef ediff ((real -> real) -> (real -> real) -> o). | |
% Deeply embedded automatic differentiation, with composition. | |
exportdef adiff ((real -> real) -> (real -> real) -> o). | |
exportdef lim-0 (real -> real) -> real -> o. | |
%% Taylor expansion around the given point. | |
exportdef taylor real -> (real -> real) -> stream real -> o. | |
exportdef maclaurin (real -> real) -> stream real -> o. | |
%% Inifnite stream type. | |
kind stream type -> type. | |
type empty (stream A). | |
type # A -> cell (stream A) -> stream A. | |
infixr # 90. | |
% Smart constructor | |
type scons A -> (stream A -> o) -> stream A -> o. | |
% Returns the list cosisting of initial n values of the given stream | |
exportdef take int -> stream A -> list A -> o. | |
% Drops initial n elements of the given stream. | |
exportdef drop int -> stream A -> stream A -> o. | |
% Maps stream. | |
exportdef zipped (A -> B -> C -> o) -> stream A -> stream B -> stream C -> o. | |
% Cell containing a (possibly delayed) value. | |
kind cell type -> type. | |
type thunk (A -> o) -> cell A. | |
type value A -> cell A. | |
% Force cell to the value. | |
exportdef force (cell A -> A -> o). | |
exportdef facts stream int -> o. | |
exportdef machelper (real -> real) -> stream real -> o. | |
exportdef macTerm int -> real -> real -> o. | |
exportdef facHelper int -> int -> stream int -> o. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$ tjcc diff && tjlink diff | |
$ tjsim diff | |
Compiling: diff | |
Linking... | |
Welcome to Teyjus | |
Copyright (C) 2008 A. Gacek, S. Holte, G. Nadathur, X. Qi, Z. Snow | |
Teyjus comes with ABSOLUTELY NO WARRANTY | |
This is free software, and you are welcome to redistribute it | |
under certain conditions. Please view the accompanying file | |
COPYING for more information | |
[diff] ?- adiff (X\ X * sin X) E. | |
The answer substitution: | |
E = W1\ 1.000000 * sin W1 + W1 * (cos W1 * 1.000000) | |
More solutions (y/n)? y | |
no (more) solutions | |
[diff] ?- ndiff 2 (X\ X * sin X) E. | |
The answer substitution: | |
E = W1\ 1.000000 * (cos W1 * 1.000000) + (1.000000 * (cos W1 * 1.000000) + W1 * (- sin W1 * 1.000000 * 1.000000 + cos W1 * 0.000000)) | |
More solutions (y/n)? n | |
yes | |
[diff] ?- maclaurin (X\ X * sin X) S, take 5 S M. | |
The answer substitution: | |
M = 0.000000 :: 0.000000 :: 1.000000 :: 0.000000 :: -0.166667 :: nil | |
S = 0.000000 # thunk (zipped macTerm (1 # thunk (facHelper 2 1)) (0.000000 # thunk (machelper (W1\ 1.000000 * (cos W1 * 1.000000) + (1.000000 * (cos W1 * 1.000000) + W1 * (- sin W1 * 1.000000 * 1.000000 + cos W1 * 0.000000)))))) | |
More solutions (y/n)? y | |
no (more) solutions | |
[diff] ?- taylor 1.0 (X\ X * sin (1.0 + X)) S, take 5 S M. | |
The answer substitution: | |
M = -0.000000 :: -1.000000 :: 1.000000 :: 0.166667 :: -0.166667 :: nil | |
S = -0.000000 # thunk (zipped macTerm (1 # thunk (facHelper 2 1)) (-1.000000 # thunk (machelper (W1\ (1.000000 - 0.000000) * (cos (1.000000 + (W1 - 1.000000)) * (0.000000 + (1.000000 - 0.000000))) + ((1.000000 - 0.000000) * (cos (1.000000 + (W1 - 1.000000)) * (0.000000 + (1.000000 - 0.000000))) + (W1 - 1.000000) * (- sin (1.000000 + (W1 - 1.000000)) * (0.000000 + (1.000000 - 0.000000)) * (0.000000 + (1.000000 - 0.000000)) + cos (1.000000 + (W1 - 1.000000)) * 0.000000)))))) | |
More solutions (y/n)? y | |
no (more) solutions | |
[diff] ?- taylor 0.5 sin E, take 5 E S. | |
The answer substitution: | |
S = -0.479426 :: 0.877583 :: 0.239713 :: -0.146264 :: -0.019976 :: nil | |
E = -0.479426 # thunk (zipped macTerm (1 # thunk (facHelper 2 1)) (0.877583 # thunk (machelper (W1\ - sin (W1 - 0.500000) * (1.000000 - 0.000000) * (1.000000 - 0.000000) + cos (W1 - 0.500000) * 0.000000)))) | |
More solutions (y/n)? y | |
no (more) solutions |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment