Created
February 15, 2014 16:02
-
-
Save konn/9021329 to your computer and use it in GitHub Desktop.
[anonymous-sums](http://hackage.haskell.org/package/anonymous-sums) in Idris
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module anonsum | |
import Syntax.PreorderReasoning | |
import Data.HVect | |
%default total | |
data Sum : Vect n Type -> Type where | |
Inj : (k : Fin n) -> index k ts -> Sum ts | |
cons : a -> List a -> List a | |
cons = (::) | |
mapIndexCommute : (f : a -> b) -> (m : Fin n) -> (xs : Vect n a) -> f (index m xs) = index m (map f xs) | |
mapIndexCommute f m [] = FinZElim m | |
mapIndexCommute f fZ (x :: xs) = refl | |
mapIndexCommute f (fS k) (x :: xs) = mapIndexCommute f k xs | |
replaceAtMapCommute : (f : a -> b) -> (n : Fin m) -> (ts : Vect m a) -> replaceAt n (f (index n ts)) (map f ts) = map f ts | |
replaceAtMapCommute f n [] = FinZElim n | |
replaceAtMapCommute f fZ (x :: xs) = refl | |
replaceAtMapCommute f (fS y) (x :: xs) = cong $ replaceAtMapCommute f y xs | |
partitionSum : {ts : Vect n Type} -> List (Sum ts) -> HVect (map List ts) | |
partitionSum {ts = []} _ = [] | |
partitionSum {ts = t :: ts} [] = [] :: partitionSum [] | |
partitionSum {ts = ts} (Inj n a :: as) = | |
replace (replaceAtMapCommute List n ts) $ | |
updateAt n (replace {P = \a => a -> List (index n ts)} (mapIndexCommute List n ts) $ cons a) | |
(partitionSum as) | |
lemma_caseSum : (z : Type) -> (m : Fin n) -> (ts : Vect n Type) -> index m (map (\a => a -> z) ts) = (index m ts -> z) | |
lemma_caseSum z m [] = FinZElim m | |
lemma_caseSum z fZ (x :: xs) = refl | |
lemma_caseSum z (fS y) (x :: xs) = lemma_caseSum z y xs | |
lemma_mapSum : (ts, ts' : Vect n Type) -> (m : Fin n) -> | |
index m (zipWith (\a, b => a -> b) ts ts') = (index m ts -> index m ts') | |
lemma_mapSum [] [] m = FinZElim m | |
lemma_mapSum (x :: xs) (y :: ys) fZ = refl | |
lemma_mapSum (x :: xs) (y :: ys) (fS z) = lemma_mapSum xs ys z | |
caseSum : {ts : Vect n Type} -> HVect (map (\a => a -> z) ts) -> Sum ts -> z | |
caseSum {z = z} {ts = ts} fs (Inj k a) = | |
replace { P = id } (lemma_caseSum z k ts) (index k fs) a | |
mapSum : {ts, ts' : Vect n Type} -> HVect (zipWith (\a, b => a -> b) ts ts') -> Sum ts -> Sum ts' | |
mapSum {ts = ts} {ts' = ts'} fs (Inj k a) = | |
Inj k (replace {P = id} (lemma_mapSum ts ts' k) (index k fs) a) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment