Created
November 6, 2017 16:48
-
-
Save kopylovvlad/27058575b3536079108042db09f711a3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.naive_bayes import * | |
from sklearn.dummy import * | |
from sklearn.ensemble import * | |
from sklearn.neighbors import * | |
from sklearn.tree import * | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.feature_extraction.text import HashingVectorizer | |
from sklearn.calibration import * | |
from sklearn.linear_model import * | |
from sklearn.multiclass import * | |
from sklearn.svm import * | |
import pandas | |
def perform(classifiers, vectorizers, train_data, test_data): | |
for classifier in classifiers: | |
for vectorizer in vectorizers: | |
string = '' | |
string += classifier.__class__.__name__ + ' with ' + vectorizer.__class__.__name__ | |
# train | |
vectorize_text = vectorizer.fit_transform(train_data.v2) | |
classifier.fit(vectorize_text, train_data.v1) | |
# score | |
vectorize_text = vectorizer.transform(test_data.v2) | |
score = classifier.score(vectorize_text, test_data.v1) | |
string += '. Has score: ' + str(score) | |
print(string) | |
# open data-set and divide it | |
data = pandas.read_csv('spam.csv', encoding='latin-1') | |
learn = data[:4400] # 4400 items | |
test = data[4400:] # 1172 items | |
perform( | |
[ | |
BernoulliNB(), | |
RandomForestClassifier(n_estimators=100, n_jobs=-1), | |
AdaBoostClassifier(), | |
BaggingClassifier(), | |
ExtraTreesClassifier(), | |
GradientBoostingClassifier(), | |
DecisionTreeClassifier(), | |
CalibratedClassifierCV(), | |
DummyClassifier(), | |
PassiveAggressiveClassifier(), | |
RidgeClassifier(), | |
RidgeClassifierCV(), | |
SGDClassifier(), | |
OneVsRestClassifier(SVC(kernel='linear')), | |
OneVsRestClassifier(LogisticRegression()), | |
KNeighborsClassifier() | |
], | |
[ | |
CountVectorizer(), | |
TfidfVectorizer(), | |
HashingVectorizer() | |
], | |
learn, | |
test | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment