Skip to content

Instantly share code, notes, and snippets.

@kor01
Last active August 16, 2017 23:11
Show Gist options
  • Save kor01/af03bc665aa5e98d8ba446c79ba1f338 to your computer and use it in GitHub Desktop.
Save kor01/af03bc665aa5e98d8ba446c79ba1f338 to your computer and use it in GitHub Desktop.
[matplot cheet] subplot bars #matplot
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# Read in and plot the image
image = mpimg.imread('Udacican.jpeg')
plt.imshow(image)
# Take histograms in R, G, and B
r_hist = np.histogram(image[:,:,0], bins=32, range=(0, 256))
g_hist = np.histogram(image[:,:,1], bins=32, range=(0, 256))
b_hist = np.histogram(image[:,:,2], bins=32, range=(0, 256))
# Generating bin centers
bin_edges = r_hist[1]
bin_centers = (bin_edges[1:] + bin_edges[0:len(bin_edges)-1])/2
fig = plt.figure(figsize=(12,3))
plt.subplot(131)
plt.bar(bin_centers, r_hist[0])
plt.xlim(0, 256)
plt.title('R Histogram')
plt.subplot(132)
plt.bar(bin_centers, g_hist[0])
plt.xlim(0, 256)
plt.title('G Histogram')
plt.subplot(133)
plt.bar(bin_centers, b_hist[0])
plt.xlim(0, 256)
plt.title('B Histogram')
plt.show()
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
# Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm, edgecolors='black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title('SVC with '+ker+' kernel', fontsize=20)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment