Skip to content

Instantly share code, notes, and snippets.

View korkridake's full-sized avatar
💙
print("Hello World!")

Korkrid Kyle Akepanidtaworn korkridake

💙
print("Hello World!")
View GitHub Profile
@korkridake
korkridake / dsagent-walmart-stock-data-2025.py
Created March 5, 2025 14:57
Get started with the DS Agent on Walmart Stocks Data 2025
# -*- coding: utf-8 -*-
"""DS Agent - Walmart Stocks Data 2025 (Unfiltered).ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1xQPflL75hlDCGRRntyEBdSt_DgegxlTi
# Task
Hey Data Science Agent, can you help with the data analysis on this dataset? It includes EDA, descriptive stats, and some data visualizations. If you can, could you also suggest some time-series modeling?
@korkridake
korkridake / githubprofile-analytics.md
Created June 30, 2021 04:09
GitHub Profile - Analytics
@korkridake
korkridake / mlops-evaluate.py
Created June 5, 2020 07:11
MLOps Ep.4 Productionizing Evaluation and Deployment Script
import numpy as np
import matplotlib.pyplot as plt
import azureml.core
# Display the core SDK version number
print("Azure ML SDK Version: ", azureml.core.VERSION)
# Define an environment
from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
@korkridake
korkridake / mlops-evaluate.py
Created June 5, 2020 07:11
MLOps Ep.4 Productionizing Evaluation and Deployment Script
import numpy as np
import matplotlib.pyplot as plt
import azureml.core
# Display the core SDK version number
print("Azure ML SDK Version: ", azureml.core.VERSION)
# Define an environment
from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
@korkridake
korkridake / score.py
Created June 5, 2020 07:08
MLOps Ep.4 Productionizing Scoring Script
%%writefile score.py
import json
import numpy as np
import os
import pickle
import joblib
def init():
global model
##################################################################################################
@korkridake
korkridake / mlops-score.py
Created June 5, 2020 07:06
MLOps Ep.4 Productionizing Scoring Script
# Import libraries
import json
import numpy as np
from azureml.core.model import Model
import joblib
# Load model
model_path = Model.get_model_path(model_name="sklearn_regression_model.pkl")
model = joblib.load(model_path)
@korkridake
korkridake / mlops-train-run-ml.py
Created June 5, 2020 06:57
MLOps Ep.4 Productionizing Training Script (Train, Validate, and Save Models)
# Get hold of the current run
run = Run.get_context()
# Experiment parameters
args = {
"n_estimators": 120
}
reg_model = RandomForestRegressor(**args)
reg_model.fit(data["train"]["X"], data["train"]["y"])
@korkridake
korkridake / mlops-train-load-and-preprocess-data.py
Created June 5, 2020 06:49
MLOps Ep.4 Productionizing Training Script (Load and preprocess data)
# Load data in Pandas
df = dataset.to_pandas_dataframe()
print(df.shape)
df.head()
# Preprocess data
df = df.drop_duplicates()
df = df.drop(["dateCrawled","dateCreated","lastSeen", "seller", "name", "postalCode"] , axis = 1)
df["notRepairedDamage"] = df["notRepairedDamage"].fillna("nein")
df["fuelType"] = df["fuelType"].fillna("benzin")
@korkridake
korkridake / automl-h20-simple-flow.R
Created June 3, 2020 08:41
Automated machine learning H20.ai in R
# Install H2O packages
if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }
if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }
pkgs <- c("RCurl","jsonlite")
for (pkg in pkgs) {
if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) }
}
install.packages("h2o", type="source", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/latest_stable_R")))
library(h2o)
localH2O = h2o.init()
@korkridake
korkridake / mlops-train-register-dataset.py
Created May 29, 2020 13:13
MLOps Ep.4 Productionizing Training Script (Register a dataset in Azure Machine Learning Datastore)
# Get the datastore to upload prepared data
datastore = ws.get_default_datastore()
# Upload the local file from src_dir to the target_path in datastore
datastore.upload(src_dir='../aml-kaggle/datasets/', target_path='ds_regression')
# Create a dataset referencing the cloud location
dataset = Dataset.Tabular.from_delimited_files(datastore.path('ds_regression/autos.csv'))
# Register a dataset