A Pen by Shigeru Kobayashi on CodePen.
Last active
August 15, 2018 02:18
-
-
Save kotobuki/1463996812b7b38f5c06c36a81923b58 to your computer and use it in GitHub Desktop.
XOR
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Reference | |
// https://github.com/mattcam/tfjs_xor_example | |
const model = tf.sequential(); | |
model.add(tf.layers.dense({ units: 10, activation: "sigmoid", inputShape: [2] })); | |
model.add(tf.layers.dense({ units: 1, activation: "sigmoid" })); | |
model.compile({ optimizer: "rmsprop", loss: "meanSquaredError" }); | |
const trainingData = tf.tensor2d([[0, 0], [0, 1], [1, 0], [1, 1]]); | |
const targetData = tf.tensor2d([[0], [1], [1], [0]]); | |
console.log("Learning..."); | |
// Let's change the value of epochs and see what happens | |
// epochs: The number of times to iterate over the training data arrays | |
// epochsの値を変更して何が起こるかみてみよう | |
// epochs:トレーニング用データ配列を反復処理する回数 | |
model.fit(trainingData, targetData, { epochs: 100 }).then(history => { | |
console.log("Finished!"); | |
console.log("loss = " + history.history.loss[0]); | |
model.predict(trainingData).print(); | |
}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<script src="https://cdnjs.cloudflare.com/ajax/libs/tensorflow/0.12.5/tf.min.js"></script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment